Suppr超能文献

使用基于混合部件的步态特征进行稳健的与衣物无关的步态识别。

Robust clothing-independent gait recognition using hybrid part-based gait features.

作者信息

Gao Zhipeng, Wu Junyi, Wu Tingting, Huang Renyu, Zhang Anguo, Zhao Jianqiang

机构信息

Xiamen Meiya Pico Information Co., Ltd., Xiamen, Fujian, China.

College of Mathematics and Data Science, Minjiang University, Fuzhou, China.

出版信息

PeerJ Comput Sci. 2022 May 31;8:e996. doi: 10.7717/peerj-cs.996. eCollection 2022.

Abstract

Recently, gait has been gathering extensive interest for the non-fungible position in applications. Although various methods have been proposed for gait recognition, most of them can only attain an excellent recognition performance when the probe and gallery gaits are in a similar condition. Once external factors ( clothing variations) influence people's gaits and changes happen in human appearances, a significant performance degradation occurs. Hence, in our article, a robust hybrid part-based spatio-temporal feature learning method is proposed for gait recognition to handle this cloth-changing problem. First, human bodies are segmented into the affected and non/less unaffected parts based on the anatomical studies. Then, a well-designed network is proposed in our method to formulate our required hybrid features from the non/less unaffected body parts. This network contains three sub-networks, aiming to generate features independently. Each sub-network emphasizes individual aspects of gait, hence an effective hybrid gait feature can be created through their concatenation. In addition, temporal information can be used as complement to enhance the recognition performance, a sub-network is specifically proposed to establish the temporal relationship between consecutive short-range frames. Also, since local features are more discriminative than global features in gait recognition, in this network a sub-network is specifically proposed to generate features of local refined differences. The effectiveness of our proposed method has been evaluated by experiments on the CASIA Gait Dataset B and OU-ISIR Treadmill Gait Dataset B. Related experiments illustrate that compared with other gait recognition methods, our proposed method can achieve a prominent result when handling this cloth-changing gait recognition problem.

摘要

最近,步态因其在应用中的独特地位而受到广泛关注。尽管已经提出了各种步态识别方法,但大多数方法只有在探测步态和图库步态处于相似条件下时才能获得优异的识别性能。一旦外部因素(服装变化)影响人们的步态并导致人体外观发生变化,识别性能就会显著下降。因此,在我们的文章中,提出了一种鲁棒的基于混合部分的时空特征学习方法用于步态识别,以解决这种着装变化问题。首先,根据解剖学研究将人体分为受影响部分和未受影响/受影响较小的部分。然后,我们的方法中提出了一个精心设计的网络,从未受影响/受影响较小的身体部位提取所需的混合特征。该网络包含三个子网络,旨在独立生成特征。每个子网络强调步态的不同方面,因此通过它们的串联可以创建有效的混合步态特征。此外,时间信息可以作为补充来提高识别性能,专门提出了一个子网络来建立连续短程帧之间的时间关系。而且,由于在步态识别中局部特征比全局特征更具辨别力,在这个网络中专门提出了一个子网络来生成局部细化差异的特征。我们提出的方法的有效性已通过在CASIA步态数据集B和OU-ISIR跑步机步态数据集B上的实验进行评估。相关实验表明,与其他步态识别方法相比,我们提出的方法在处理这种着装变化的步态识别问题时可以取得显著成果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ade1/9202625/3f845cce7b3a/peerj-cs-08-996-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验