Suppr超能文献

使用少量步态帧进行步态识别。

Gait recognition using a few gait frames.

作者信息

Yao Lingxiang, Kusakunniran Worapan, Wu Qiang, Zhang Jian

机构信息

School of Electrical and Data Engineering, University of Technology Sydney, Sydney, Australia.

Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, Thailand.

出版信息

PeerJ Comput Sci. 2021 Mar 1;7:e382. doi: 10.7717/peerj-cs.382. eCollection 2021.

Abstract

Gait has been deemed as an alternative biometric in video-based surveillance applications, since it can be used to recognize individuals from a far distance without their interaction and cooperation. Recently, many gait recognition methods have been proposed, aiming at reducing the influence caused by exterior factors. However, most of these methods are developed based on sufficient input gait frames, and their recognition performance will sharply decrease if the frame number drops. In the real-world scenario, it is impossible to always obtain a sufficient number of gait frames for each subject due to many reasons, e.g., occlusion and illumination. Therefore, it is necessary to improve the gait recognition performance when the available gait frames are limited. This paper starts with three different strategies, aiming at producing more input frames and eliminating the generalization error cause by insufficient input data. Meanwhile, a two-branch network is also proposed in this paper to formulate robust gait representations from the original and new generated input gait frames. According to our experiments, under the limited gait frames being used, it was verified that the proposed method can achieve a reliable performance for gait recognition.

摘要

步态已被视为基于视频的监控应用中的一种替代生物特征识别方式,因为它可用于在远距离识别个体,且无需个体互动与配合。最近,人们提出了许多步态识别方法,旨在减少外部因素造成的影响。然而,这些方法大多是基于充足的输入步态帧开发的,如果帧数下降,其识别性能将大幅降低。在现实场景中,由于许多原因,例如遮挡和光照,不可能总是为每个受试者获取足够数量的步态帧。因此,当可用的步态帧有限时,提高步态识别性能是很有必要的。本文从三种不同策略入手,旨在生成更多输入帧并消除因输入数据不足导致的泛化误差。同时,本文还提出了一种双分支网络,以便从原始的和新生成的输入步态帧中构建稳健的步态表征。根据我们的实验,在使用有限数量步态帧的情况下,验证了所提方法能够实现可靠的步态识别性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1686/7959613/f9c2a15aad0b/peerj-cs-07-382-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验