Suppr超能文献

NADPH氧化酶在血管生理和病理生理中的不同作用。

Differential roles of NADPH oxidases in vascular physiology and pathophysiology.

作者信息

Amanso Angelica M, Griendling Kathy K

机构信息

Department of Medicine, Division of Cardiology, Emory University, Division of Cardiology, Atlanta, GA 30322, USA.

出版信息

Front Biosci (Schol Ed). 2012 Jan 1;4(3):1044-64. doi: 10.2741/s317.

Abstract

Reactive oxygen species (ROS) are produced by all vascular cells and regulate the major physiological functions of the vasculature. Production and removal of ROS are tightly controlled and occur in discrete subcellular locations, allowing for specific, compartmentalized signaling. Among the many sources of ROS in the vessel wall, NADPH oxidases are implicated in physiological functions such as control of vasomotor tone, regulation of extracellular matrix and phenotypic modulation of vascular smooth muscle cells. They are involved in the response to injury, whether as an oxygen sensor during hypoxia, as a regulator of protein processing, as an angiogenic stimulus, or as a mechanism of wound healing. These enzymes have also been linked to processes leading to disease development, including migration, proliferation, hypertrophy, apoptosis and autophagy. As a result, NADPH oxidases participate in atherogenesis, systemic and pulmonary hypertension and diabetic vascular disease. The role of ROS in each of these processes and diseases is complex, and a more full understanding of the sources, targets, cell-specific responses and counterbalancing mechanisms is critical for the rational development of future therapeutics.

摘要

活性氧(ROS)由所有血管细胞产生,并调节血管的主要生理功能。ROS的产生和清除受到严格控制,且发生在离散的亚细胞位置,从而实现特定的、分隔化的信号传导。在血管壁中众多的ROS来源中,NADPH氧化酶参与诸如血管舒缩张力控制、细胞外基质调节以及血管平滑肌细胞表型调节等生理功能。它们参与对损伤的反应,无论是作为缺氧时的氧传感器、蛋白质加工的调节因子、血管生成刺激因子还是伤口愈合机制。这些酶还与导致疾病发展的过程相关,包括迁移、增殖、肥大、凋亡和自噬。因此,NADPH氧化酶参与动脉粥样硬化、系统性和肺动脉高压以及糖尿病血管疾病。ROS在这些过程和疾病中的作用是复杂的,更全面地了解其来源、靶点、细胞特异性反应和平衡机制对于未来治疗药物的合理开发至关重要。

相似文献

1
Differential roles of NADPH oxidases in vascular physiology and pathophysiology.
Front Biosci (Schol Ed). 2012 Jan 1;4(3):1044-64. doi: 10.2741/s317.
2
The Nox family of NADPH oxidases: friend or foe of the vascular system?
Curr Hypertens Rep. 2012 Feb;14(1):70-8. doi: 10.1007/s11906-011-0238-3.
3
Reactive oxygen species and the control of vascular function.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H539-49. doi: 10.1152/ajpheart.01167.2008. Epub 2009 Jan 16.
4
NADPH oxidases in vascular pathology.
Antioxid Redox Signal. 2014 Jun 10;20(17):2794-814. doi: 10.1089/ars.2013.5607. Epub 2013 Nov 1.
5
Reactive oxygen species signaling in vascular smooth muscle cells.
Cardiovasc Res. 2006 Jul 15;71(2):216-25. doi: 10.1016/j.cardiores.2006.02.033. Epub 2006 Mar 7.
7
Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology.
Clin Exp Pharmacol Physiol. 2003 Nov;30(11):849-54. doi: 10.1046/j.1440-1681.2003.03929.x.
8
NADPH oxidases in cardiovascular health and disease.
Antioxid Redox Signal. 2006 May-Jun;8(5-6):691-728. doi: 10.1089/ars.2006.8.691.
9
Redox signaling through NADPH oxidases: involvement in vascular proliferation and coagulation.
Ann N Y Acad Sci. 2002 Nov;973:505-7. doi: 10.1111/j.1749-6632.2002.tb04691.x.
10
NOXA1-dependent NADPH oxidase regulates redox signaling and phenotype of vascular smooth muscle cell during atherogenesis.
Redox Biol. 2019 Feb;21:101063. doi: 10.1016/j.redox.2018.11.021. Epub 2018 Nov 29.

引用本文的文献

2
Cellular, molecular, and metabolic aspects of developing lungs in congenital diaphragmatic hernia.
Front Pediatr. 2022 Nov 15;10:932463. doi: 10.3389/fped.2022.932463. eCollection 2022.
3
Physiological Media in Studies of Cell Metabolism.
Mol Biol. 2022;56(5):629-637. doi: 10.1134/S0026893322050077. Epub 2022 Oct 5.
4
Local delivery of FTY720 induces neutrophil activation through chemokine signaling in an oronasal fistula model.
Regen Eng Transl Med. 2021;7(2):160-174. doi: 10.1007/s40883-021-00208-z. Epub 2021 May 13.
5
Ginsenoside Rb1 Ameliorates Diabetic Arterial Stiffening AMPK Pathway.
Front Pharmacol. 2021 Oct 12;12:753881. doi: 10.3389/fphar.2021.753881. eCollection 2021.
6
Peroxiredoxins as Potential Targets for Cardiovascular Disease.
Antioxidants (Basel). 2021 Aug 3;10(8):1244. doi: 10.3390/antiox10081244.
8
Potential Roles of Endoplasmic Reticulum Stress and Cellular Proteins Implicated in Diabesity.
Oxid Med Cell Longev. 2021 Apr 27;2021:8830880. doi: 10.1155/2021/8830880. eCollection 2021.
9
Anatomically specific reactive oxygen species production participates in Marfan syndrome aneurysm formation.
J Cell Mol Med. 2019 Oct;23(10):7000-7009. doi: 10.1111/jcmm.14587. Epub 2019 Aug 11.
10
Cellular Mechanisms of Aortic Aneurysm Formation.
Circ Res. 2019 Feb 15;124(4):607-618. doi: 10.1161/CIRCRESAHA.118.313187.

本文引用的文献

1
Role for Nox1 NADPH oxidase in atherosclerosis.
Atherosclerosis. 2011 Jun;216(2):321-6. doi: 10.1016/j.atherosclerosis.2011.02.028. Epub 2011 Feb 24.
2
Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress.
Nat Cell Biol. 2011 Mar;13(3):184-90. doi: 10.1038/ncb0311-184.
3
Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism.
PLoS One. 2011 Feb 7;6(2):e14665. doi: 10.1371/journal.pone.0014665.
4
Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases.
Kidney Int. 2011 May;79(9):944-56. doi: 10.1038/ki.2010.516. Epub 2011 Feb 9.
6
Endosomal ClC-3 and Nox1: moving marksmen of redox signaling?
Arterioscler Thromb Vasc Biol. 2011 Feb;31(2):240-2. doi: 10.1161/ATVBAHA.110.220053.
7
H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles.
Circ Res. 2011 Mar 4;108(5):566-73. doi: 10.1161/CIRCRESAHA.110.237636. Epub 2011 Jan 13.
8
Nox2 redox signaling maintains essential cell populations in the brain.
Nat Chem Biol. 2011 Feb;7(2):106-12. doi: 10.1038/nchembio.497. Epub 2010 Dec 26.
9
NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis.
J Cell Biol. 2010 Dec 13;191(6):1113-25. doi: 10.1083/jcb.201006121. Epub 2010 Dec 6.
10
Cysteine/cystine redox signaling in cardiovascular disease.
Free Radic Biol Med. 2011 Feb 15;50(4):495-509. doi: 10.1016/j.freeradbiomed.2010.11.029. Epub 2010 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验