Suppr超能文献

硬骨鱼类基因组学的进展。

Advances in genomics of bony fish.

作者信息

Spaink Herman P, Jansen Hans J, Dirks Ron P

机构信息

Einsteinweg 55, 2333 CC Leiden, The Netherlands.

出版信息

Brief Funct Genomics. 2014 Mar;13(2):144-56. doi: 10.1093/bfgp/elt046. Epub 2013 Nov 29.

Abstract

In this review, we present an overview of the recent advances of genomic technologies applied to studies of fish species belonging to the superclass of Osteichthyes (bony fish) with a major emphasis on the infraclass of Teleostei, also called teleosts. This superclass that represents more than 50% of all known vertebrate species has gained considerable attention from genome researchers in the last decade. We discuss many examples that demonstrate that this highly deserved attention is currently leading to new opportunities for answering important biological questions on gene function and evolutionary processes. In addition to giving an overview of the technologies that have been applied for studying various fish species we put the recent advances in genome research on the model species zebrafish and medaka in the context of its impact for studies of all fish of the superclass of Osteichthyes. We thereby want to illustrate how the combined value of research on model species together with a broad angle perspective on all bony fish species will have a huge impact on research in all fields of fundamental science and will speed up applications in many societally important areas such as the development of new medicines, toxicology test systems, environmental sensing systems and sustainable aquaculture strategies.

摘要

在本综述中,我们概述了基因组技术在硬骨鱼纲(硬骨鱼类)物种研究中的最新进展,重点关注真骨下纲,也称为硬骨鱼。在过去十年中,这个占所有已知脊椎动物物种50%以上的纲受到了基因组研究人员的广泛关注。我们讨论了许多例子,这些例子表明,这种高度应得的关注目前正在为回答有关基因功能和进化过程的重要生物学问题带来新的机会。除了概述用于研究各种鱼类物种的技术外,我们还将斑马鱼和青鳉等模式物种基因组研究的最新进展置于其对硬骨鱼纲所有鱼类研究的影响背景下。我们借此想要说明,模式物种研究的综合价值以及对所有硬骨鱼物种的广泛视角将如何对基础科学的所有领域产生巨大影响,并加速在许多具有社会重要性的领域中的应用,如新药物开发、毒理学测试系统、环境传感系统和可持续水产养殖策略。

相似文献

1
Advances in genomics of bony fish.
Brief Funct Genomics. 2014 Mar;13(2):144-56. doi: 10.1093/bfgp/elt046. Epub 2013 Nov 29.
2
A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo.
J Exp Zool B Mol Dev Evol. 2015 Jun;324(4):316-41. doi: 10.1002/jez.b.22589. Epub 2014 Aug 11.
3
Fish genomics and biology.
Genome Res. 2005 Dec;15(12):1675-82. doi: 10.1101/gr.3735805.
4
5
Linking the genomes of nonmodel teleosts through comparative genomics.
Mar Biotechnol (NY). 2008 May-Jun;10(3):227-33. doi: 10.1007/s10126-007-9066-5. Epub 2008 Feb 23.
9
Fish welfare and genomics.
Fish Physiol Biochem. 2012 Feb;38(1):43-60. doi: 10.1007/s10695-011-9522-z. Epub 2011 Jun 14.
10
Diversification of the functions of proglucagon and glucagon receptor genes in fish.
Gen Comp Endocrinol. 2018 May 15;261:148-165. doi: 10.1016/j.ygcen.2018.03.003. Epub 2018 Mar 3.

引用本文的文献

1
Application of Multi-Omics Techniques in Aquatic Ecotoxicology: A Review.
Toxics. 2025 Jul 31;13(8):653. doi: 10.3390/toxics13080653.
2
Decoding the fish genome opens a new era in important trait research and molecular breeding in China.
Sci China Life Sci. 2024 Oct;67(10):2064-2083. doi: 10.1007/s11427-023-2670-5. Epub 2024 Aug 12.
3
Transcription Pattern of Neurotrophic Factors and Their Receptors in Adult Zebrafish Spinal Cord.
Int J Mol Sci. 2023 Jun 30;24(13):10953. doi: 10.3390/ijms241310953.
4
Mobile Elements in Ray-Finned Fish Genomes.
Life (Basel). 2020 Sep 25;10(10):221. doi: 10.3390/life10100221.
5
Genomic Access to the Diversity of Fishes.
Methods Mol Biol. 2020;2090:397-411. doi: 10.1007/978-1-0716-0199-0_16.
6
Predicting Metabolism from Gene Expression in an Improved Whole-Genome Metabolic Network Model of .
Zebrafish. 2019 Aug;16(4):348-362. doi: 10.1089/zeb.2018.1712. Epub 2019 Jun 19.
8
Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding.
PLoS One. 2017 Apr 25;12(4):e0176343. doi: 10.1371/journal.pone.0176343. eCollection 2017.
9
Fish Immunoglobulins.
Biology (Basel). 2016 Nov 21;5(4):45. doi: 10.3390/biology5040045.
10
A full-body transcriptome and proteome resource for the European common carp.
BMC Genomics. 2016 Sep 2;17(1):701. doi: 10.1186/s12864-016-3038-y.

本文引用的文献

1
Single-male paternity in coelacanths.
Nat Commun. 2013;4:2488. doi: 10.1038/ncomms3488.
2
Coelacanth genomes reveal signatures for evolutionary transition from water to land.
Genome Res. 2013 Oct;23(10):1740-8. doi: 10.1101/gr.158105.113. Epub 2013 Jul 22.
3
Small molecule screening in zebrafish: swimming in potential drug therapies.
Wiley Interdiscip Rev Dev Biol. 2012 May-Jun;1(3):459-68. doi: 10.1002/wdev.37. Epub 2012 Feb 28.
4
Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna.
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11061-6. doi: 10.1073/pnas.1302051110. Epub 2013 Jun 18.
5
Robotic injection of zebrafish embryos for high-throughput screening in disease models.
Methods. 2013 Aug 15;62(3):246-54. doi: 10.1016/j.ymeth.2013.06.002. Epub 2013 Jun 11.
6
A bilirubin-inducible fluorescent protein from eel muscle.
Cell. 2013 Jun 20;153(7):1602-11. doi: 10.1016/j.cell.2013.05.038. Epub 2013 Jun 13.
8
Deep mRNA sequencing analysis to capture the transcriptome landscape of zebrafish embryos and larvae.
PLoS One. 2013 May 20;8(5):e64058. doi: 10.1371/journal.pone.0064058. Print 2013.
9
Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos.
Cell. 2013 May 9;153(4):773-84. doi: 10.1016/j.cell.2013.04.041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验