Suppr超能文献

用于再现多样化发放模式和预测精确发放时间的元素尖峰神经元模型。

Elemental spiking neuron model for reproducing diverse firing patterns and predicting precise firing times.

机构信息

Department of Physics, Kyoto University Kyoto, Japan.

出版信息

Front Comput Neurosci. 2011 Oct 4;5:42. doi: 10.3389/fncom.2011.00042. eCollection 2011.

Abstract

In simulating realistic neuronal circuitry composed of diverse types of neurons, we need an elemental spiking neuron model that is capable of not only quantitatively reproducing spike times of biological neurons given in vivo-like fluctuating inputs, but also qualitatively representing a variety of firing responses to transient current inputs. Simplistic models based on leaky integrate-and-fire mechanisms have demonstrated the ability to adapt to biological neurons. In particular, the multi-timescale adaptive threshold (MAT) model reproduces and predicts precise spike times of regular-spiking, intrinsic-bursting, and fast-spiking neurons, under any fluctuating current; however, this model is incapable of reproducing such specific firing responses as inhibitory rebound spiking and resonate spiking. In this paper, we augment the MAT model by adding a voltage dependency term to the adaptive threshold so that the model can exhibit the full variety of firing responses to various transient current pulses while maintaining the high adaptability inherent in the original MAT model. Furthermore, with this addition, our model is actually able to better predict spike times. Despite the augmentation, the model has only four free parameters and is implementable in an efficient algorithm for large-scale simulation due to its linearity, serving as an element neuron model in the simulation of realistic neuronal circuitry.

摘要

在模拟由多种类型神经元组成的真实神经元电路时,我们需要一个基本的尖峰神经元模型,该模型不仅能够定量重现体内类似波动输入的生物神经元的尖峰时间,还能够定性地表示对瞬态电流输入的各种发放响应。基于漏电流积分和放电机制的简化模型已经证明了适应生物神经元的能力。特别是,多时间尺度自适应阈值 (MAT) 模型能够在任何波动电流下重现和预测常规放电、内在爆发和快速放电神经元的精确尖峰时间;然而,该模型无法再现抑制性反弹放电和共振放电等特定的发放响应。在本文中,我们通过在自适应阈值中添加电压依赖性项来扩展 MAT 模型,以使模型能够在保持原始 MAT 模型固有高适应性的同时,对各种瞬态电流脉冲表现出全各种发放响应。此外,通过这种扩展,我们的模型实际上能够更好地预测尖峰时间。尽管进行了扩展,但由于其线性特性,该模型只有四个自由参数,并且可以在用于大规模模拟的高效算法中实现,因此可作为真实神经元电路模拟中的元件神经元模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/446b/3215233/0a13ec8ee1d4/fncom-05-00042-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验