Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France.
J Biol Chem. 2012 Feb 24;287(9):6642-54. doi: 10.1074/jbc.M111.322917. Epub 2011 Dec 29.
Amylosucrases are sucrose-utilizing α-transglucosidases that naturally catalyze the synthesis of α-glucans, linked exclusively through α1,4-linkages. Side products and in particular sucrose isomers such as turanose and trehalulose are also produced by these enzymes. Here, we report the first structural and biophysical characterization of the most thermostable amylosucrase identified so far, the amylosucrase from Deinoccocus geothermalis (DgAS). The three-dimensional structure revealed a homodimeric quaternary organization, never reported before for other amylosucrases. A sequence signature of dimerization was identified from the analysis of the dimer interface and sequence alignments. By rigidifying the DgAS structure, the quaternary organization is likely to participate in the enhanced thermal stability of the protein. Amylosucrase specificity with respect to sucrose isomer formation (turanose or trehalulose) was also investigated. We report the first structures of the amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea in complex with turanose. In the amylosucrase from N. polysaccharea (NpAS), key residues were found to force the fructosyl moiety to bind in an open state with the O3' ideally positioned to explain the preferential formation of turanose by NpAS. Such residues are either not present or not similarly placed in DgAS. As a consequence, DgAS binds the furanoid tautomers of fructose through a weak network of interactions to enable turanose formation. Such topology at subsite +1 is likely favoring other possible fructose binding modes in agreement with the higher amount of trehalulose formed by DgAS. Our findings help to understand the inter-relationships between amylosucrase structure, flexibility, function, and stability and provide new insight for amylosucrase design.
淀粉蔗糖酶是一种利用蔗糖的 α-转葡糖苷酶,它能自然催化 α-葡聚糖的合成,仅通过 α1,4-键连接。这些酶还会产生副产物,特别是蔗糖异构体,如海藻糖和异海藻糖。在这里,我们报告了迄今为止鉴定的最耐热淀粉蔗糖酶,即地热能球菌淀粉蔗糖酶(DgAS)的首次结构和生物物理特性。三维结构显示出同源二聚体的四元组织,这是以前从未报道过的其他淀粉蔗糖酶。通过对二聚体界面和序列比对的分析,确定了二聚化的序列特征。通过刚性化 DgAS 结构,四元组织可能参与了蛋白质热稳定性的提高。淀粉蔗糖酶对蔗糖异构体(海藻糖或异海藻糖)形成的特异性也进行了研究。我们报告了地热能球菌和粘膜炎奈瑟菌淀粉蔗糖酶与海藻糖复合物的首个结构。在粘膜炎奈瑟菌淀粉蔗糖酶(NpAS)中,发现了关键残基,使果糖基部分以开放状态结合,O3' 理想地定位,从而解释了 NpAS 优先形成海藻糖的原因。在 DgAS 中,这些残基要么不存在,要么没有以类似的方式放置。因此,DgAS 通过弱相互作用网络结合果糖的呋喃型互变异构体,从而能够形成海藻糖。这种在+1 亚基部位的拓扑结构可能有利于其他可能的果糖结合模式,与 DgAS 形成的更多异海藻糖一致。我们的发现有助于理解淀粉蔗糖酶结构、灵活性、功能和稳定性之间的相互关系,并为淀粉蔗糖酶的设计提供新的见解。