Suppr超能文献

平滑等渗回归:一种校准预测模型的新方法。

Smooth isotonic regression: a new method to calibrate predictive models.

作者信息

Jiang Xiaoqian, Osl Melanie, Kim Jihoon, Ohno-Machado Lucila

机构信息

Division of Biomedical Informatics, Department of Medicine University of California, San Diego.

出版信息

AMIA Jt Summits Transl Sci Proc. 2011;2011:16-20. Epub 2011 Mar 7.

Abstract

Predictive models are critical for risk adjustment in clinical research. Evaluation of supervised learning models often focuses on predictive model discrimination, sometimes neglecting the assessment of their calibration. Recent research in machine learning has shown the benefits of calibrating predictive models, which becomes especially important when probability estimates are used for clinical decision making. By extending the isotonic regression method for recalibration to obtain a smoother fit in reliability diagrams, we introduce a novel method that combines parametric and non-parametric approaches. The method calibrates probabilistic outputs smoothly and shows better generalization ability than its ancestors in simulated as well as real world biomedical data sets.

摘要

预测模型对于临床研究中的风险调整至关重要。监督学习模型的评估通常侧重于预测模型的区分能力,有时会忽略对其校准的评估。机器学习领域的最新研究表明了校准预测模型的益处,当概率估计用于临床决策时,这一点变得尤为重要。通过扩展用于重新校准的等渗回归方法,以在可靠性图中获得更平滑的拟合,我们引入了一种结合参数和非参数方法的新方法。该方法能平滑地校准概率输出,并且在模拟以及真实世界的生物医学数据集中,比其前身具有更好的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d5/3248752/fe6fba4400f5/16-cri_summit_2011f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验