Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
Electrophoresis. 2010 Oct;31(19):3233-46. doi: 10.1002/elps.201000158.
Large particles tend to get trapped in dead-ends more often than small particles when electrophoresed in random cross-linked gels. It is known that pulsed electric fields can be used to free particles from these traps, leading to an increase in velocity and improved size separation. Although numerical and theoretical models have been proposed for the mobility of smaller particles in the so-called Ogston sieving limit, the effect of pulsed fields on trapping has not been previously modeled. We present a numerical study of detrapping and we compare our results with those of To and Boyde (To, K.-Y., Boyde, T. R., Electrophoresis 1993, 14, 597). We use an exact numerical method to examine detrapping in various two-dimensional systems of obstacles. We also propose and investigate new ways to optimize the pulse sequence in order to separate particles of different sizes.
在无规交联凝胶中电泳时,大颗粒比小颗粒更容易被困在死端中。已知脉冲电场可用于将颗粒从这些陷阱中释放出来,从而提高速度并改善尺寸分离。尽管已经提出了用于较小颗粒在所谓的奥格斯顿筛分极限下的迁移率的数值和理论模型,但以前尚未对脉冲场对捕获的影响进行建模。我们对解吸进行了数值研究,并将结果与 To 和 Boyde 的结果进行了比较(To,K.-Y.,Boyde,T. R.,电泳 1993 年,14,597)。我们使用精确的数值方法来研究各种二维障碍物系统中的解吸。我们还提出并研究了新的方法来优化脉冲序列,以便分离不同大小的颗粒。