Suppr超能文献

猪的蛋白质-蛋白质相互作用网络的预测和特征描述。

Prediction and characterization of protein-protein interaction networks in swine.

机构信息

College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.

出版信息

Proteome Sci. 2012 Jan 10;10(1):2. doi: 10.1186/1477-5956-10-2.

Abstract

BACKGROUND

Studying the large-scale protein-protein interaction (PPI) network is important in understanding biological processes. The current research presents the first PPI map of swine, which aims to give new insights into understanding their biological processes.

RESULTS

We used three methods, Interolog-based prediction of porcine PPI network, domain-motif interactions from structural topology-based prediction of porcine PPI network and motif-motif interactions from structural topology-based prediction of porcine PPI network, to predict porcine protein interactions among 25,767 porcine proteins. We predicted 20,213, 331,484, and 218,705 porcine PPIs respectively, merged the three results into 567,441 PPIs, constructed four PPI networks, and analyzed the topological properties of the porcine PPI networks. Our predictions were validated with Pfam domain annotations and GO annotations. Averages of 70, 10,495, and 863 interactions were related to the Pfam domain-interacting pairs in iPfam database. For comparison, randomized networks were generated, and averages of only 4.24, 66.79, and 44.26 interactions were associated with Pfam domain-interacting pairs in iPfam database. In GO annotations, we found 52.68%, 75.54%, 27.20% of the predicted PPIs sharing GO terms respectively. However, the number of PPI pairs sharing GO terms in the 10,000 randomized networks reached 52.68%, 75.54%, 27.20% is 0. Finally, we determined the accuracy and precision of the methods. The methods yielded accuracies of 0.92, 0.53, and 0.50 at precisions of about 0.93, 0.74, and 0.75, respectively.

CONCLUSION

The results reveal that the predicted PPI networks are considerably reliable. The present research is an important pioneering work on protein function research. The porcine PPI data set, the confidence score of each interaction and a list of related data are available at (http://pppid.biositemap.com/).

摘要

背景

研究大规模蛋白质-蛋白质相互作用(PPI)网络对于理解生物过程非常重要。本研究首次构建了猪的 PPI 图谱,旨在为理解其生物过程提供新的见解。

结果

我们使用了三种方法,基于同源物预测的猪 PPI 网络、基于结构拓扑预测的猪 PPI 网络的结构域-模体相互作用和基于结构拓扑预测的猪 PPI 网络的模体-模体相互作用,来预测 25767 个猪蛋白之间的相互作用。我们分别预测了 20213、331484 和 218705 个猪 PPI,将这三种结果合并为 567441 个 PPI,构建了四个 PPI 网络,并分析了猪 PPI 网络的拓扑性质。我们的预测结果与 Pfam 结构域注释和 GO 注释进行了验证。在 iPfam 数据库中,与 Pfam 结构域相互作用对相关的平均 PPI 分别为 70、10495 和 863 个。相比之下,随机网络的平均值仅为 4.24、66.79 和 44.26 个与 iPfam 数据库中的 Pfam 结构域相互作用对相关。在 GO 注释中,我们发现 52.68%、75.54%和 27.20%的预测 PPIs 分别具有 GO 术语。然而,在 10000 个随机网络中,具有 GO 术语的 PPI 对的数量达到 52.68%、75.54%和 27.20%的为 0。最后,我们确定了这些方法的准确性和精度。这些方法在精度约为 0.93、0.74 和 0.75 时,准确率分别为 0.92、0.53 和 0.50。

结论

这些结果表明预测的 PPI 网络相当可靠。本研究是蛋白质功能研究的一项重要的开创性工作。猪的 PPI 数据集、每个相互作用的置信分数和相关数据列表可在(http://pppid.biositemap.com/)获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4616/3306829/82297730380f/1477-5956-10-2-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验