Institute for Surface and Interface Science, University of California, Irvine, California 92697, USA.
J Am Chem Soc. 2012 Feb 1;134(4):2032-5. doi: 10.1021/ja211540z. Epub 2012 Jan 24.
The dynamic processivity of individual T4 lysozyme molecules was monitored in the presence of either linear or cross-linked peptidoglycan substrates. Single-molecule monitoring was accomplished using a novel electronic technique in which lysozyme molecules were tethered to single-walled carbon nanotube field-effect transistors through pyrene linker molecules. The substrate-driven hinge-bending motions of lysozyme induced dynamic electronic signals in the underlying transistor, allowing long-term monitoring of the same molecule without the limitations of optical quenching or bleaching. For both substrates, lysozyme exhibited processive low turnover rates of 20-50 s(-1) and rapid (200-400 s(-1)) nonproductive motions. The latter nonproductive binding events occupied 43% of the enzyme's time in the presence of the cross-linked peptidoglycan but only 7% with the linear substrate. Furthermore, lysozyme catalyzed the hydrolysis of glycosidic bonds to the end of the linear substrate but appeared to sidestep the peptide cross-links to zigzag through the wild-type substrate.
研究人员在存在线性或交联肽聚糖底物的情况下,监测了单个 T4 溶菌酶分子的动态连续性。通过一种新颖的电子技术实现了单分子监测,该技术通过芘连接分子将溶菌酶分子连接到单壁碳纳米管场效应晶体管上。底物驱动的溶菌酶铰链弯曲运动在基础晶体管中产生动态电子信号,从而允许在没有光学猝灭或漂白限制的情况下对同一分子进行长期监测。对于这两种底物,溶菌酶均表现出低周转率的连续性,其周转率为 20-50 s(-1),以及快速(200-400 s(-1))的非生产性运动。在后一种非生产性结合事件中,酶在交联肽聚糖存在的情况下占据了 43%的时间,而在存在线性底物的情况下仅占 7%。此外,溶菌酶催化糖苷键在线性底物末端的水解,但似乎避开了肽交联,从而通过野生型底物呈之字形运动。