Graduate School of Pharmaceutical Sciences and Global COE Program, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan.
Anal Chem. 2012 Feb 7;84(3):1374-9. doi: 10.1021/ac2023603. Epub 2012 Jan 17.
Previously, we developed the "protein activation and release from cage by external light" (PARCEL) method for controlling the function of proteins by encapsulating them in a photodegradable hydrogel and subsequently releasing them by ultraviolet (UV) irradiation of the gel. However, controlling small proteins is difficult because small proteins can leak from the gap (ca. 12.4 nm) of the mesh structure of the hydrogel without irradiation. Here, we developed a photodegradable gel with a smaller mesh size (~3.6 nm) and used the new gel to control the function of three small enzymes (trypsin, chymotrypsin, and elastase) and several small nonprotein molecules. The new gel showed reduced leakage of the proteins without irradiation, and tryptic activity increased approximately 78-fold upon irradiation of gel-encapsulated trypsin. The new gel also permitted encapsulation and release of 4',6-diamidino-2-phenylindole (DAPI, molecular weight 277), a small DNA-specific fluorescent probe. After irradiation to the gel-encapsulated DAPI and subsequent addition of DNA, strong fluorescence of the DAPI-DNA complex was observed. Our results indicate that reducing the gel mesh size from 12.4 to 3.6 nm should allow the encapsulation of various proteins and small molecules in an inactive state and their subsequent light-induced release. We expect this method to be useful in preparation of photoactivated biosensors, drug delivery systems, and catalysis.
先前,我们开发了“通过外部光从笼中激活和释放蛋白质”(PARCEL)方法,通过将蛋白质封装在可光降解的水凝胶中,并随后通过凝胶的紫外(UV)照射来释放它们,从而控制蛋白质的功能。然而,控制小蛋白质是困难的,因为小蛋白质可以在没有照射的情况下从小蛋白质从水凝胶的网格结构的间隙(约 12.4nm)中漏出。在这里,我们开发了一种具有更小网格尺寸(~3.6nm)的可光降解凝胶,并使用新凝胶来控制三种小酶(胰蛋白酶、糜蛋白酶和弹性蛋白酶)和几种小非蛋白质分子的功能。新凝胶显示出在没有照射的情况下蛋白质漏出减少,并且在凝胶包封的胰蛋白酶照射时,胰蛋白酶活性增加了约 78 倍。新凝胶还允许包封和释放 4',6-二脒基-2-苯基吲哚(DAPI,分子量 277),一种小的 DNA 特异性荧光探针。在对凝胶包封的 DAPI 进行照射并随后添加 DNA 后,观察到 DAPI-DNA 复合物的强荧光。我们的结果表明,将凝胶网格尺寸从 12.4nm 减小到 3.6nm 应该允许各种蛋白质和小分子以非活性状态包封,并随后进行光诱导释放。我们预计该方法将在光激活生物传感器、药物传递系统和催化的制备中有用。