Group of Biometrics, Biosignals and Security, Universidad Politécnica de Madrid, Campus de Montegancedo s/n, 28223 Pozuelo de Alarcón, Madrid, Spain.
Sensors (Basel). 2011;11(12):11141-56. doi: 10.3390/s111211141. Epub 2011 Nov 28.
This paper presents an image segmentation algorithm based on Gaussian multiscale aggregation oriented to hand biometric applications. The method is able to isolate the hand from a wide variety of background textures such as carpets, fabric, glass, grass, soil or stones. The evaluation was carried out by using a publicly available synthetic database with 408,000 hand images in different backgrounds, comparing the performance in terms of accuracy and computational cost to two competitive segmentation methods existing in literature, namely Lossy Data Compression (LDC) and Normalized Cuts (NCuts). The results highlight that the proposed method outperforms current competitive segmentation methods with regard to computational cost, time performance, accuracy and memory usage.
本文提出了一种基于高斯多尺度聚合的图像分割算法,适用于手生物特征识别应用。该方法能够将手从各种背景纹理(如地毯、织物、玻璃、草、土或石头)中分离出来。评估是通过使用一个公开的合成数据库进行的,该数据库包含 408000 张不同背景的手图像,根据准确性和计算成本与文献中两种有竞争力的分割方法(即有损数据压缩(LDC)和归一化切割(NCuts))进行性能比较。结果表明,与当前有竞争力的分割方法相比,所提出的方法在计算成本、时间性能、准确性和内存使用方面表现更好。