Suppr超能文献

使用冷冻电镜断层扫描和 3D 子体积平均法计算构象异质性的分离。

Computational separation of conformational heterogeneity using cryo-electron tomography and 3D sub-volume averaging.

机构信息

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

J Struct Biol. 2012 May;178(2):165-76. doi: 10.1016/j.jsb.2012.01.004. Epub 2012 Jan 10.

Abstract

We have previously used cryo-electron tomography combined with sub-volume averaging and classification to obtain 3D structures of macromolecular assemblies in cases where a single dominant species was present, and applied these methods to the analysis of a variety of trimeric HIV-1 and SIV envelope glycoproteins (Env). Here, we extend these studies by demonstrating automated, iterative, missing wedge-corrected 3D image alignment and classification methods to distinguish multiple conformations that are present simultaneously. We present a method for measuring the spatial distribution of the vector elements representing distinct conformational states of Env. We identify data processing strategies that allow clear separation of the previously characterized closed and open conformations, as well as unliganded and antibody-liganded states of Env when they are present in mixtures. We show that identifying and removing spikes with the lowest signal-to-noise ratios improves the overall accuracy of alignment between individual Env sub-volumes, and that alignment accuracy, in turn, determines the success of image classification in assessing conformational heterogeneity in heterogeneous mixtures. We validate these procedures for computational separation by successfully separating and reconstructing distinct 3D structures for unliganded and antibody-liganded as well as open and closed conformations of Env present simultaneously in mixtures.

摘要

我们之前曾使用冷冻电子断层扫描结合子体积平均和分类的方法,获得了单一优势种存在情况下的大分子组装体的 3D 结构,并将这些方法应用于各种三聚体 HIV-1 和 SIV 包膜糖蛋白(Env)的分析。在这里,我们通过演示自动、迭代、缺失楔形校正的 3D 图像对齐和分类方法,来区分同时存在的多种构象,从而扩展了这些研究。我们提出了一种测量代表 Env 不同构象状态的向量元素的空间分布的方法。我们确定了数据处理策略,这些策略允许明确区分以前表征的封闭和开放构象,以及存在于混合物中的未结合和抗体结合状态的 Env。我们表明,通过识别和去除具有最低信噪比的尖峰,可以提高个体 Env 子体积之间对齐的整体准确性,而对齐准确性反过来又决定了在评估混合物中构象异质性时图像分类的成功。我们通过成功地分离和重建同时存在于混合物中的未结合和抗体结合以及开放和封闭构象的 Env 的不同 3D 结构,验证了这些用于计算分离的程序的有效性。

相似文献

7
Cryo-Electron Tomography and Subtomogram Averaging.冷冻电子断层扫描与亚断层平均法
Methods Enzymol. 2016;579:329-67. doi: 10.1016/bs.mie.2016.04.014. Epub 2016 Jun 22.

引用本文的文献

2
8
Catching HIV 'in the act' with 3D electron microscopy.利用 3D 电子显微镜“当场”捕获 HIV。
Trends Microbiol. 2013 Aug;21(8):397-404. doi: 10.1016/j.tim.2013.06.004. Epub 2013 Jul 11.
9
HIV-1 envelope glycoprotein structure.HIV-1 包膜糖蛋白结构。
Curr Opin Struct Biol. 2013 Apr;23(2):268-76. doi: 10.1016/j.sbi.2013.03.007. Epub 2013 Apr 18.

本文引用的文献

7
Maximum likelihood based classification of electron tomographic data.基于最大似然法的电子断层数据分类。
J Struct Biol. 2011 Jan;173(1):77-85. doi: 10.1016/j.jsb.2010.08.005. Epub 2010 Aug 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验