Suppr超能文献

用线性随机模型预测平均动脉血压。

Prediction of mean arterial blood pressure with linear stochastic models.

作者信息

Genc Sahika

机构信息

Sensor Informatics and Technologies Laboratory, Software Sciences and Analytics, General Electric Global Research, Niskayuna, NY 12309, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:712-5. doi: 10.1109/IEMBS.2011.6090161.

Abstract

A model-based approach that integrates known portion of the cardiovascular system and unknown portion through a parameter estimation to predict evolution of the mean arterial pressure is considered. The unknown portion corresponds to the neural portion that acts like a controller that takes corrective actions to regulate the arterial blood pressure at a constant level. The input to the neural part is the arterial pressure and output is the sympathetic nerve activity. In this model, heart rate is considered a proxy for sympathetic nerve activity. The neural portion is modeled as a linear discrete-time system with random coefficients. The performance of the model is tested on a case study of acute hypotensive episodes (AHEs) on PhysioNet data. TPRs and FPRs improve as more data becomes available during estimation period.

摘要

考虑一种基于模型的方法,该方法通过参数估计将心血管系统的已知部分和未知部分整合起来,以预测平均动脉压的演变。未知部分对应于神经部分,其作用类似于一个控制器,采取纠正措施将动脉血压调节到恒定水平。神经部分的输入是动脉压,输出是交感神经活动。在这个模型中,心率被视为交感神经活动的替代指标。神经部分被建模为具有随机系数的线性离散时间系统。该模型的性能在PhysioNet数据上的急性低血压发作(AHE)案例研究中进行了测试。随着估计期间可用数据的增加,真阳性率(TPRs)和假阳性率(FPRs)有所提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验