Genc Sahika
Sensor Informatics and Technologies Laboratory, Software Sciences and Analytics, General Electric Global Research, Niskayuna, NY 12309, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:712-5. doi: 10.1109/IEMBS.2011.6090161.
A model-based approach that integrates known portion of the cardiovascular system and unknown portion through a parameter estimation to predict evolution of the mean arterial pressure is considered. The unknown portion corresponds to the neural portion that acts like a controller that takes corrective actions to regulate the arterial blood pressure at a constant level. The input to the neural part is the arterial pressure and output is the sympathetic nerve activity. In this model, heart rate is considered a proxy for sympathetic nerve activity. The neural portion is modeled as a linear discrete-time system with random coefficients. The performance of the model is tested on a case study of acute hypotensive episodes (AHEs) on PhysioNet data. TPRs and FPRs improve as more data becomes available during estimation period.
考虑一种基于模型的方法,该方法通过参数估计将心血管系统的已知部分和未知部分整合起来,以预测平均动脉压的演变。未知部分对应于神经部分,其作用类似于一个控制器,采取纠正措施将动脉血压调节到恒定水平。神经部分的输入是动脉压,输出是交感神经活动。在这个模型中,心率被视为交感神经活动的替代指标。神经部分被建模为具有随机系数的线性离散时间系统。该模型的性能在PhysioNet数据上的急性低血压发作(AHE)案例研究中进行了测试。随着估计期间可用数据的增加,真阳性率(TPRs)和假阳性率(FPRs)有所提高。