Suppr超能文献

多元时间序列的连通性分析:相关性与因果关系

Connectivity Analysis for Multivariate Time Series: Correlation vs. Causality.

作者信息

Papana Angeliki

机构信息

Department of Economics, University of Macedonia, 54636 Thessaloniki, Greece.

出版信息

Entropy (Basel). 2021 Nov 25;23(12):1570. doi: 10.3390/e23121570.

Abstract

The study of the interdependence relationships of the variables of an examined system is of great importance and remains a challenging task. There are two distinct cases of interdependence. In the first case, the variables evolve in synchrony, connections are undirected and the connectivity is examined based on symmetric measures, such as correlation. In the second case, a variable drives another one and they are connected with a causal relationship. Therefore, directed connections entail the determination of the interrelationships based on causality measures. The main open question that arises is the following: can symmetric correlation measures or directional causality measures be applied to infer the connectivity network of an examined system? Using simulations, we demonstrate the performance of different connectivity measures in case of contemporaneous or/and temporal dependencies. Results suggest the sensitivity of correlation measures when temporal dependencies exist in the data. On the other hand, causality measures do not spuriously indicate causal effects when data present only contemporaneous dependencies. Finally, the necessity of introducing effective instantaneous causality measures is highlighted since they are able to handle both contemporaneous and causal effects at the same time. Results based on instantaneous causality measures are promising; however, further investigation is required in order to achieve an overall satisfactory performance.

摘要

对所研究系统变量之间相互依存关系的研究非常重要,并且仍然是一项具有挑战性的任务。相互依存关系有两种不同的情况。在第一种情况下,变量同步演变,连接是无向的,并且基于对称度量(如相关性)来检验连通性。在第二种情况下,一个变量驱动另一个变量,它们通过因果关系相连。因此,有向连接需要基于因果度量来确定相互关系。出现的主要开放性问题如下:对称相关度量或定向因果度量能否用于推断所研究系统的连通网络?通过模拟,我们展示了在同期或/和时间依赖性情况下不同连通性度量的性能。结果表明,当数据中存在时间依赖性时,相关度量具有敏感性。另一方面,当数据仅呈现同期依赖性时,因果度量不会虚假地表明因果效应。最后,强调了引入有效的瞬时因果度量的必要性,因为它们能够同时处理同期效应和因果效应。基于瞬时因果度量的结果很有前景;然而,为了实现总体令人满意的性能,还需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0efc/8700128/4e67c5e8e076/entropy-23-01570-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验