Suppr超能文献

来自分布式脑电图源的时变连通性分析:一项模拟研究。

A Time-Varying Connectivity Analysis from Distributed EEG Sources: A Simulation Study.

作者信息

Ghumare Eshwar G, Schrooten Maarten, Vandenberghe Rik, Dupont Patrick

机构信息

The Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.

The Neurology Department, University Hospitals Leuven, Leuven, Belgium.

出版信息

Brain Topogr. 2018 Sep;31(5):721-737. doi: 10.1007/s10548-018-0621-3. Epub 2018 Jan 27.

Abstract

Time-varying connectivity analysis based on sources reconstructed using inverse modeling of electroencephalographic (EEG) data is important to understand the dynamic behaviour of the brain. We simulated cortical data from a visual spatial attention network with a time-varying connectivity structure, and then simulated the propagation to the scalp to obtain EEG data. Distributed EEG source modeling using sLORETA was applied. We compared different dipole (representing a source) selection strategies based on their time series in a region of interest. Next, we estimated multivariate autoregressive (MVAR) parameters using classical Kalman filter and general linear Kalman filter approaches followed by the calculation of partial directed coherence (PDC). MVAR parameters and PDC values for the selected sources were compared with the ground-truth. We found that the best strategy to extract the time series of a region of interest was to select a dipole with time series showing the highest correlation with the average time series in the region of interest. Dipole selection based on power or based on the largest singular value offer comparable alternatives. Among the different Kalman filter approaches, the use of a general linear Kalman filter was preferred to estimate PDC based connectivity except when only a small number of trials are available. In the latter case, the classical Kalman filter can be an alternative.

摘要

基于使用脑电图(EEG)数据的逆模型重建源的时变连接性分析对于理解大脑的动态行为很重要。我们模拟了具有时变连接结构的视觉空间注意力网络的皮质数据,然后模拟其向头皮的传播以获得EEG数据。应用了使用sLORETA的分布式EEG源建模。我们基于感兴趣区域中的时间序列比较了不同的偶极子(代表一个源)选择策略。接下来,我们使用经典卡尔曼滤波器和广义线性卡尔曼滤波器方法估计多元自回归(MVAR)参数,然后计算偏相干性(PDC)。将所选源的MVAR参数和PDC值与真实值进行比较。我们发现,提取感兴趣区域时间序列的最佳策略是选择一个其时间序列与感兴趣区域中的平均时间序列显示出最高相关性的偶极子。基于功率或基于最大奇异值的偶极子选择提供了可比的替代方案。在不同的卡尔曼滤波器方法中,除了只有少量试验可用的情况外,使用广义线性卡尔曼滤波器来估计基于PDC的连接性更受青睐。在后一种情况下,经典卡尔曼滤波器可以作为一种替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ffd/6097773/cc32e17d4572/10548_2018_621_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验