Center for Brain-Computer Interfaces and Brain Information Processing, College of Automation Science and Engineering, South China University of Technology, Wushan Road, Guangzhou, PR China.
Biomed Eng Online. 2010 Oct 28;9:64. doi: 10.1186/1475-925X-9-64.
Decoding neural activities associated with limb movements is the key of motor prosthesis control. So far, most of these studies have been based on invasive approaches. Nevertheless, a few researchers have decoded kinematic parameters of single hand in non-invasive ways such as magnetoencephalogram (MEG) and electroencephalogram (EEG). Regarding these EEG studies, center-out reaching tasks have been employed. Yet whether hand velocity can be decoded using EEG recorded during a self-routed drawing task is unclear.
Here we collected whole-scalp EEG data of five subjects during a sequential 4-directional drawing task, and employed spatial filtering algorithms to extract the amplitude and power features of EEG in multiple frequency bands. From these features, we reconstructed hand movement velocity by Kalman filtering and a smoothing algorithm.
The average Pearson correlation coefficients between the measured and the decoded velocities are 0.37 for the horizontal dimension and 0.24 for the vertical dimension. The channels on motor, posterior parietal and occipital areas are most involved for the decoding of hand velocity. By comparing the decoding performance of the features from different frequency bands, we found that not only slow potentials in 0.1-4 Hz band but also oscillatory rhythms in 24-28 Hz band may carry the information of hand velocity.
These results provide another support to neural control of motor prosthesis based on EEG signals and proper decoding methods.
解码与肢体运动相关的神经活动是运动假肢控制的关键。到目前为止,这些研究大多基于侵入性方法。然而,一些研究人员已经通过非侵入性方法(如脑磁图(MEG)和脑电图(EEG))解码了单个手的运动学参数。关于这些 EEG 研究,已经采用了中心向外的伸展任务。然而,在自我导向的绘图任务中使用 EEG 记录是否可以解码手速尚不清楚。
在这里,我们在一个连续的 4 方向绘图任务中收集了 5 个被试的全头皮 EEG 数据,并采用空间滤波算法提取多个频带的 EEG 的幅度和功率特征。从这些特征中,我们通过卡尔曼滤波和平滑算法重建手运动速度。
水平方向的测量速度和解码速度之间的平均 Pearson 相关系数为 0.37,垂直方向的平均 Pearson 相关系数为 0.24。用于解码手速度的通道主要位于运动、顶后和枕区。通过比较不同频带特征的解码性能,我们发现不仅 0.1-4 Hz 频段的慢波电位,而且 24-28 Hz 频段的振荡节律都可能携带手速信息。
这些结果为基于 EEG 信号和适当解码方法的运动假肢神经控制提供了另一个支持。