Suppr超能文献

稳定的磷酸钙核-蛋白壳纳米粒子的生物矿化和尺寸控制:在疫苗应用中的潜力。

Biomineralization and size control of stable calcium phosphate core-protein shell nanoparticles: potential for vaccine applications.

机构信息

Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.

出版信息

Bioconjug Chem. 2012 Mar 21;23(3):610-7. doi: 10.1021/bc200654v. Epub 2012 Feb 10.

Abstract

Calcium phosphate (CaP) polymorphs are nontoxic, biocompatible and hold promise in applications ranging from hard tissue regeneration to drug delivery and vaccine design. Yet, simple and robust routes for the synthesis of protein-coated CaP nanoparticles in the sub-100 nm size range remain elusive. Here, we used cell surface display to identify disulfide-constrained CaP binding peptides that, when inserted within the active site loop of Escherichia coli thioredoxin 1 (TrxA), readily and reproducibly drive the production of nanoparticles that are 50-70 nm in hydrodynamic diameter and consist of an approximately 25 nm amorphous calcium phosphate (ACP) core stabilized by the protein shell. Like bone and enamel proteins implicated in biological apatite formation, peptides supporting nanoparticle production were acidic. They also required presentation in a loop for high-affinity ACP binding as elimination of the disulfide bridge caused a nearly 3-fold increase in hydrodynamic diameters. When compared to a commercial aluminum phosphate adjuvant, the small core-shell assemblies led to a 3-fold increase in mice anti-TrxA titers 3 weeks postinjection, suggesting that they might be useful vehicles for adjuvanted antigen delivery to dendritic cells.

摘要

钙磷酸盐(CaP)多晶型物是无毒、生物相容的,在从硬组织再生到药物输送和疫苗设计等应用中具有广阔的前景。然而,在亚 100nm 尺寸范围内合成蛋白质包覆的 CaP 纳米颗粒的简单而稳健的方法仍然难以实现。在这里,我们使用细胞表面展示技术来鉴定二硫键约束的 CaP 结合肽,当将其插入大肠杆菌硫氧还蛋白 1(TrxA)的活性位点环中时,这些肽能够轻松且可重复地驱动纳米颗粒的产生,这些纳米颗粒的水动力直径为 50-70nm,由约 25nm 的无定形磷酸钙(ACP)核心组成,由蛋白质壳稳定。与参与生物磷灰石形成的骨和牙釉质蛋白一样,支持纳米颗粒生成的肽是酸性的。它们还需要以环的形式呈现,以实现高亲和力的 ACP 结合,因为消除二硫键会导致水动力直径增加近 3 倍。与商业磷酸铝佐剂相比,小核壳组装体在注射后 3 周使小鼠抗 TrxA 滴度增加了 3 倍,这表明它们可能是用于将佐剂抗原递送至树突状细胞的有用载体。

相似文献

4
Calcium phosphate coated core-shell protein nanocarriers: Robust stability, controlled release and enhanced anticancer activity for curcumin delivery.
Mater Sci Eng C Mater Biol Appl. 2020 Oct;115:111094. doi: 10.1016/j.msec.2020.111094. Epub 2020 May 19.
5
6
Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12360-5. doi: 10.1073/pnas.1510533112. Epub 2015 Sep 21.
7
Osteogenesis-inducing calcium phosphate nanoparticle precursors applied to titanium surfaces.
Biomed Mater. 2013 Jun;8(3):035007. doi: 10.1088/1748-6041/8/3/035007. Epub 2013 Apr 5.
9
Calcium phosphate nanoparticles for transcutaneous vaccine delivery.
J Biomed Nanotechnol. 2013 Jan;9(1):132-41. doi: 10.1166/jbn.2013.1545.

引用本文的文献

1
The quest for nanoparticle-powered vaccines in cancer immunotherapy.
J Nanobiotechnology. 2024 Feb 14;22(1):61. doi: 10.1186/s12951-024-02311-z.
2
A Glance on Nanovaccine: A Potential Approach for Disease Prevention.
Curr Pharm Biotechnol. 2024;25(11):1406-1418. doi: 10.2174/0113892010254221231006100659.
3
Modular Design for Proteins Assembling into Antifouling Coatings: Case of Gold Surfaces.
Langmuir. 2023 Jul 11;39(27):9290-9299. doi: 10.1021/acs.langmuir.3c00389. Epub 2023 Jun 27.
4
Biomedical applications of solid-binding peptides and proteins.
Mater Today Bio. 2023 Feb 15;19:100580. doi: 10.1016/j.mtbio.2023.100580. eCollection 2023 Apr.
5
A quantitative calcium phosphate nanocluster model of the casein micelle: the average size, size distribution and surface properties.
Eur Biophys J. 2021 Sep;50(6):847-866. doi: 10.1007/s00249-021-01533-5. Epub 2021 Apr 18.
6
Biological and Medical Applications of Calcium Phosphate Nanoparticles.
Chemistry. 2021 May 12;27(27):7471-7488. doi: 10.1002/chem.202005257. Epub 2021 Mar 16.
7
Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications.
Chem Soc Rev. 2018 May 21;47(10):3574-3620. doi: 10.1039/c7cs00877e.
8
Facet selectivity in gold binding peptides: exploiting interfacial water structure.
Chem Sci. 2015 Sep 1;6(9):5204-5214. doi: 10.1039/c5sc00399g. Epub 2015 Jun 23.
9
The role played by modified bioinspired surfaces in interfacial properties of biomaterials.
Biophys Rev. 2017 Oct;9(5):683-698. doi: 10.1007/s12551-017-0306-2. Epub 2017 Aug 22.
10
Peptide-based synthetic vaccines.
Chem Sci. 2016 Feb 1;7(2):842-854. doi: 10.1039/c5sc03892h. Epub 2015 Dec 17.

本文引用的文献

1
Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review.
Acta Biomater. 2012 Apr;8(4):1401-21. doi: 10.1016/j.actbio.2011.11.017. Epub 2011 Nov 20.
2
Aqueous, protein-driven synthesis of transition metal-doped ZnS immuno-quantum dots.
ACS Nano. 2011 Oct 25;5(10):8013-8. doi: 10.1021/nn2024896. Epub 2011 Sep 28.
3
Amorphous calcium phosphate and its application in dentistry.
Chem Cent J. 2011 Jul 8;5:40. doi: 10.1186/1752-153X-5-40.
4
Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals.
Langmuir. 2011 Jun 21;27(12):7620-8. doi: 10.1021/la104757g. Epub 2011 Feb 3.
5
6
Hydroxyapatite nanoparticles: A review of preparation methodologies.
J Appl Biomater Biomech. 2004 May-Aug;2(2):74-80.
7
Biomimetic transformations of amorphous calcium phosphate: kinetic and thermodynamic studies.
J Mater Sci Mater Med. 2010 Sep;21(9):2501-9. doi: 10.1007/s10856-010-4103-8. Epub 2010 Jun 9.
8
The flexible polyelectrolyte hypothesis of protein-biomineral interaction.
Langmuir. 2010 Dec 21;26(24):18639-46. doi: 10.1021/la100401r. Epub 2010 Jun 8.
9
Single-pot biofabrication of zinc sulfide immuno-quantum dots.
J Am Chem Soc. 2010 Apr 7;132(13):4731-8. doi: 10.1021/ja909406n.
10
Quantification of the binding affinity of a specific hydroxyapatite binding peptide.
Biomaterials. 2010 Apr;31(11):2955-63. doi: 10.1016/j.biomaterials.2010.01.012. Epub 2010 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验