Suppr超能文献

肠神经系统特异性敲除 Foxd3 会破坏神经胶质细胞分化并激活代偿性肠前体细胞。

Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors.

机构信息

Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

出版信息

Dev Biol. 2012 Mar 15;363(2):373-87. doi: 10.1016/j.ydbio.2012.01.003. Epub 2012 Jan 12.

Abstract

The enteric nervous system (ENS) arises from the coordinated migration, expansion and differentiation of vagal and sacral neural crest progenitor cells. During development, vagal neural crest cells enter the foregut and migrate in a rostro-to-caudal direction, colonizing the entire gastrointestinal tract and generating the majority of the ENS. Sacral neural crest contributes to a subset of enteric ganglia in the hindgut, colonizing the colon in a caudal-to-rostral wave. During this process, enteric neural crest-derived progenitors (ENPs) self-renew and begin expressing markers of neural and glial lineages as they populate the intestine. Our earlier work demonstrated that the transcription factor Foxd3 is required early in neural crest-derived progenitors for self-renewal, multipotency and establishment of multiple neural crest-derived cells and structures including the ENS. Here, we describe Foxd3 expression within the fetal and postnatal intestine: Foxd3 was strongly expressed in ENPs as they colonize the gastrointestinal tract and was progressively restricted to enteric glial cells. Using a novel Ednrb-iCre transgene to delete Foxd3 after vagal neural crest cells migrate into the midgut, we demonstrated a late temporal requirement for Foxd3 during ENS development. Lineage labeling of Ednrb-iCre expressing cells in Foxd3 mutant embryos revealed a reduction of ENPs throughout the gut and loss of Ednrb-iCre lineage cells in the distal colon. Although mutant mice were viable, defects in patterning and distribution of ENPs were associated with reduced proliferation and severe reduction of glial cells derived from the Ednrb-iCre lineage. Analyses of ENS-lineage and differentiation in mutant embryos suggested activation of a compensatory population of Foxd3-positive ENPs that did not express the Ednrb-iCre transgene. Our findings highlight the crucial roles played by Foxd3 during ENS development including progenitor proliferation, neural patterning, and glial differentiation and may help delineate distinct molecular programs controlling vagal versus sacral neural crest development.

摘要

肠神经系统 (ENS) 源于迷走神经和骶神经嵴祖细胞的协调迁移、扩增和分化。在发育过程中,迷走神经嵴细胞进入前肠,并向头侧到尾侧方向迁移,定植整个胃肠道并产生大部分 ENS。骶神经嵴有助于后肠的一部分肠神经节,以尾侧向头侧波的方式定植结肠。在此过程中,肠神经嵴衍生祖细胞 (ENP) 自我更新,并在定植肠道时开始表达神经和神经胶质谱系的标志物。我们之前的工作表明,转录因子 Foxd3 在神经嵴衍生祖细胞中早期对于自我更新、多能性和建立包括 ENS 在内的多个神经嵴衍生细胞和结构是必需的。在这里,我们描述了 Foxd3 在胎儿和新生期肠道中的表达:Foxd3 在 ENP 定植胃肠道时强烈表达,并逐渐局限于肠神经胶质细胞。使用新型 Ednrb-iCre 转基因在迷走神经嵴细胞迁移到中肠后删除 Foxd3,我们证明了 Foxd3 在 ENS 发育过程中的晚期时间依赖性。在 Foxd3 突变胚胎中表达 Ednrb-iCre 的细胞的谱系标记显示整个肠道中 ENP 的减少和远端结肠中 Ednrb-iCre 谱系细胞的丢失。尽管突变小鼠是存活的,但 ENP 模式形成和分布的缺陷与增殖减少和源自 Ednrb-iCre 谱系的神经胶质细胞的严重减少有关。对突变胚胎 ENS 谱系和分化的分析表明,Foxd3 阳性 ENP 的代偿性群体被激活,这些细胞不表达 Ednrb-iCre 转基因。我们的研究结果强调了 Foxd3 在 ENS 发育过程中的关键作用,包括祖细胞增殖、神经模式形成和神经胶质分化,并可能有助于描绘控制迷走神经与骶神经嵴发育的不同分子程序。

相似文献

1
7
Neuronal Differentiation in Schwann Cell Lineage Underlies Postnatal Neurogenesis in the Enteric Nervous System.
J Neurosci. 2015 Jul 8;35(27):9879-88. doi: 10.1523/JNEUROSCI.1239-15.2015.
9
Fine scale differences within the vagal neural crest for enteric nervous system formation.
Dev Biol. 2019 Feb 1;446(1):22-33. doi: 10.1016/j.ydbio.2018.11.007. Epub 2018 Nov 16.

引用本文的文献

1
Spatiotemporal dynamics of the developing zebrafish enteric nervous system at the whole-organ level.
Dev Cell. 2025 Feb 24;60(4):613-629.e6. doi: 10.1016/j.devcel.2024.11.006. Epub 2024 Dec 5.
3
Development, Diversity, and Neurogenic Capacity of Enteric Glia.
Front Cell Dev Biol. 2022 Jan 17;9:775102. doi: 10.3389/fcell.2021.775102. eCollection 2021.
4
5
Enteric glia as a source of neural progenitors in adult zebrafish.
Elife. 2020 Aug 27;9:e56086. doi: 10.7554/eLife.56086.
6
Migration pathways of sacral neural crest during development of lower urogenital tract innervation.
Dev Biol. 2017 Sep 1;429(1):356-369. doi: 10.1016/j.ydbio.2017.04.011. Epub 2017 Apr 25.
7
Arundic Acid Prevents Developmental Upregulation of S100B Expression and Inhibits Enteric Glial Development.
Front Cell Neurosci. 2017 Feb 23;11:42. doi: 10.3389/fncel.2017.00042. eCollection 2017.
8
The paradox of Foxd3: how does it function in pluripotency and differentiation of embryonic stem cells?
Stem Cell Investig. 2016 Nov 4;3:73. doi: 10.21037/sci.2016.09.20. eCollection 2016.
9
Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis.
BMC Biol. 2016 Oct 24;14(1):94. doi: 10.1186/s12915-016-0314-x.
10
The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System.
Gastroenterology. 2016 Nov;151(5):836-844. doi: 10.1053/j.gastro.2016.07.044. Epub 2016 Aug 10.

本文引用的文献

2
Transcription factor Sox10 orchestrates activity of a neural crest-specific enhancer in the vicinity of its gene.
Nucleic Acids Res. 2012 Jan;40(1):88-101. doi: 10.1093/nar/gkr734. Epub 2011 Sep 9.
3
Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut.
J Clin Invest. 2011 Sep;121(9):3398-411. doi: 10.1172/JCI58186. Epub 2011 Aug 25.
5
Isolation and live imaging of enteric progenitors based on Sox10-Histone2BVenus transgene expression.
Genesis. 2011 Jul;49(7):599-618. doi: 10.1002/dvg.20748. Epub 2011 Jun 21.
6
Functional interaction between Foxd3 and Pax3 in cardiac neural crest development.
Genesis. 2011 Jan;49(1):10-23. doi: 10.1002/dvg.20686. Epub 2010 Dec 22.
7
Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.
Development. 2011 Feb;138(4):641-52. doi: 10.1242/dev.054718. Epub 2011 Jan 12.
8
Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.
Dev Biol. 2011 Jan 15;349(2):321-30. doi: 10.1016/j.ydbio.2010.11.013. Epub 2010 Nov 23.
9
Developmental determinants of the independence and complexity of the enteric nervous system.
Trends Neurosci. 2010 Oct;33(10):446-56. doi: 10.1016/j.tins.2010.06.002. Epub 2010 Jul 13.
10
Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage.
J Cell Biol. 2010 May 17;189(4):701-12. doi: 10.1083/jcb.200912142. Epub 2010 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验