Suppr超能文献

体素分类和图割在病理性假体髋解剖结构自动分割中的应用。

Voxel classification and graph cuts for automated segmentation of pathological periprosthetic hip anatomy.

机构信息

Department of Orthopaedics, Leiden University Medical Center, J11-R, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.

出版信息

Int J Comput Assist Radiol Surg. 2013 Jan;8(1):63-74. doi: 10.1007/s11548-012-0671-z. Epub 2012 Jan 21.

Abstract

PURPOSE

Automated patient-specific image-based segmentation of tissues surrounding aseptically loose hip prostheses is desired. For this we present an automated segmentation pipeline that labels periprosthetic tissues in computed tomography (CT). The intended application of this pipeline is in pre-operative planning.

METHODS

Individual voxels were classified based on a set of automatically extracted image features. Minimum-cost graph cuts were computed on the classification results. The graph-cut step enabled us to enforce geometrical containment constraints, such as cortical bone sheathing the femur's interior. The solution's novelty lies in the combination of voxel classification with multilabel graph cuts and in the way label costs were defined to enforce containment constraints.

RESULTS

The segmentation pipeline was tested on a set of twelve manually segmented clinical CT volumes. The distribution of healthy tissue and bone cement was automatically determined with sensitivities greater than 82% and pathological fibrous interface tissue with a sensitivity exceeding 73%. Specificity exceeded 96% for all tissues.

CONCLUSIONS

The addition of a graph-cut step improved segmentation compared to voxel classification alone. The pipeline described in this paper represents a practical approach to segmenting multitissue regions from CT.

摘要

目的

我们希望实现对无菌性松动髋关节假体周围组织进行基于患者个体化的图像自动分割。为此,我们提出了一种自动分割算法,用于对 CT 图像中的假体周围组织进行标注。该算法的预期应用场景是术前规划。

方法

我们根据一组自动提取的图像特征对单个体素进行分类。在分类结果的基础上计算最小代价图割。图割步骤使我们能够强制实施几何约束,例如,用皮质骨包裹股骨内部。该算法的新颖之处在于体素分类与多标签图割的结合,以及定义标签代价以强制实施包含约束的方式。

结果

我们在一组 12 个手动分割的临床 CT 容积上对分割算法进行了测试。自动确定健康组织和骨水泥的分布的灵敏度大于 82%,而病理性纤维界面组织的灵敏度超过 73%。对于所有组织,特异性均超过 96%。

结论

与单纯的体素分类相比,图割步骤的加入提高了分割性能。本文描述的分割算法代表了一种从 CT 图像中分割多组织区域的实用方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验