Suppr超能文献

更好的医疗保健选择研究的调查设计和分析策略。

Survey-design and analytical strategies for better healthcare stated-choice studies.

机构信息

1 Health Solutions, RTI International, Research Triangle Park, North Carolina, USA 2 Health, Social, and Economic Research, RTI International, Research Triangle Park, North Carolina, USA.

出版信息

Patient. 2008 Dec 1;1(4):299-307. doi: 10.2165/1312067-200801040-00011.

Abstract

Stated-choice (SC) surveys, such as conjoint analysis, present some interesting problems for researchers that are not addressed in the traditional survey-development literature. While the constraints imposed by preference theory, the experimental design of the choice sets, and the statistical methods used to analyze choice data all pose challenges for researchers new to SC methods, they also direct such researchers towards techniques that are not possible with more traditional survey methods. In this article, we focus on issues of preference heterogeneity (variation in preferences across subjects by observable and non-observable co-variates) and attribute dominance to illustrate the synergistic roles that survey-design and analytical strategies play in SC research. In this article, we show how advanced analytical techniques are likely to be more important than survey-design solutions when addressing preference heterogeneity. Good practice supports the use of mixed-logit and similar modeling approaches to mitigate the problem of unobserved preference or variance heterogeneity. However, if the sample size is not large enough or the survey instrument does not contain questions about important subject characteristics, then the source of heterogeneity cannot be identified and the problems caused by heterogeneity will be magnified.In contrast, minimizing attribute dominance and testing for attribute dominance relies on careful survey design, rather than more complex analysis. In general, survey design needs careful attention from researchers. No amount of complex analysis can compensate for a poor survey design that can generate only flawed SC data.

摘要

选择式(SC)调查,如联合分析,为研究人员带来了一些在传统调查开发文献中未涉及的有趣问题。虽然偏好理论、选择集的实验设计以及用于分析选择数据的统计方法所施加的限制给新接触 SC 方法的研究人员带来了挑战,但它们也引导这些研究人员采用传统调查方法无法实现的技术。在本文中,我们重点关注偏好异质性(因可观察和不可观察的协变量而在不同主体之间存在的偏好差异)和属性主导性问题,以说明调查设计和分析策略在 SC 研究中的协同作用。在本文中,我们展示了当处理偏好异质性时,先进的分析技术可能比调查设计解决方案更为重要。良好的实践支持使用混合逻辑和类似的建模方法来减轻未观察到的偏好或方差异质性问题。然而,如果样本量不够大,或者调查工具不包含有关重要主体特征的问题,那么就无法确定异质性的来源,并且异质性引起的问题将会被放大。相比之下,最小化属性主导性和测试属性主导性依赖于仔细的调查设计,而不是更复杂的分析。总的来说,调查设计需要研究人员的密切关注。任何复杂的分析都无法弥补设计不佳的调查,因为设计不佳的调查只会产生有缺陷的 SC 数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验