Suppr超能文献

用于小动物药物输送的植入式 MEMS 微泵系统。

An implantable MEMS micropump system for drug delivery in small animals.

机构信息

Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB-140, Los Angeles, CA 90089-1111, USA.

出版信息

Biomed Microdevices. 2012 Jun;14(3):483-96. doi: 10.1007/s10544-011-9625-4.

Abstract

We present the first implantable drug delivery system for controlled timing and location of dosing in small animals. Current implantable drug delivery devices do not provide control over these factors nor are they feasible for implantation in research animals as small as mice. Our system utilizes an integrated electrolysis micropump, is refillable, has an inert drug reservoir for broad drug compatibility, and is capable of adjustment to the delivery regimen while implanted. Electrochemical impedance spectroscopy (EIS) was used for characterization of electrodes on glass substrate and a flexible Parylene substrate. Benchtop testing of the electrolysis actuator resulted in flow rates from 1 μL/min to 34 μL/min on glass substrate and up to 6.8 μL/min on Parylene substrate. The fully integrated system generated a flow rate of 4.72 ± 0.35 μL/min under applied constant current of 1.0 mA while maintaining a power consumption of only ~3 mW. Finally, we demonstrated in vivo application of the system for anti-cancer drug delivery in mice.

摘要

我们提出了第一个可在小动物体内控制给药时间和位置的植入式药物输送系统。目前的植入式药物输送装置无法控制这些因素,也不适合植入像老鼠这样的小型研究动物。我们的系统利用集成的电解微泵,可再填充,具有惰性药物储库,可与广泛的药物兼容,并且在植入时能够调整给药方案。电化学阻抗谱 (EIS) 用于对玻璃基底和柔性聚对二甲苯基底上的电极进行特性描述。电解致动器的台式测试结果表明,在玻璃基底上的流速为 1 μL/min 至 34 μL/min,在聚对二甲苯基底上的流速高达 6.8 μL/min。在施加 1.0 mA 的恒定电流下,完全集成的系统产生了 4.72 ± 0.35 μL/min 的流速,同时仅消耗约 3 mW 的功率。最后,我们展示了该系统在小鼠体内抗癌药物输送中的应用。

相似文献

1
An implantable MEMS micropump system for drug delivery in small animals.
Biomed Microdevices. 2012 Jun;14(3):483-96. doi: 10.1007/s10544-011-9625-4.
2
MEMS: Enabled Drug Delivery Systems.
Adv Healthc Mater. 2015 May;4(7):969-82. doi: 10.1002/adhm.201400772. Epub 2015 Feb 20.
3
A MEMS electrochemical bellows actuator for fluid metering applications.
Biomed Microdevices. 2013 Feb;15(1):37-48. doi: 10.1007/s10544-012-9685-0.
4
[Analysis and test of piezoelectric micropump for drug delivery].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005 Aug;22(4):809-13.
5
Implantable MEMS drug delivery pumps for small animal research.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6696-8. doi: 10.1109/IEMBS.2009.5333284.
6
Polypyrrole-Based Implantable Electroactive Pump for Controlled Drug Microinjection.
ACS Appl Mater Interfaces. 2015 Jul 15;7(27):14563-8. doi: 10.1021/acsami.5b04551. Epub 2015 Jul 6.
7
BioMEMS devices for drug delivery.
IEEE Eng Med Biol Mag. 2009 Jan-Feb;28(1):31-9. doi: 10.1109/MEMB.2008.931014.
9
A Wireless Implantable Micropump for Chronic Drug Infusion Against Cancer.
Sens Actuators A Phys. 2016 Mar 1;239:18-25. doi: 10.1016/j.sna.2016.01.001.
10
A nanoliter resolution implantable micropump for murine inner ear drug delivery.
J Control Release. 2019 Mar 28;298:27-37. doi: 10.1016/j.jconrel.2019.01.032. Epub 2019 Jan 25.

引用本文的文献

3
Recent Development of Drug Delivery Systems through Microfluidics: From Synthesis to Evaluation.
Pharmaceutics. 2022 Feb 17;14(2):434. doi: 10.3390/pharmaceutics14020434.
4
Miniaturized soft centrifugal pumps with magnetic levitation for fluid handling.
Sci Adv. 2021 Oct 29;7(44):eabi7203. doi: 10.1126/sciadv.abi7203. Epub 2021 Oct 27.
5
A Wirelessly Controlled Scalable 3D-Printed Microsystem for Drug Delivery.
Pharmaceuticals (Basel). 2021 Jun 4;14(6):538. doi: 10.3390/ph14060538.
6
Modeling programmable drug delivery in bioelectronics with electrochemical actuation.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2026405118.
7
In-Vivo Microsystems: A Review.
Sensors (Basel). 2020 Sep 1;20(17):4953. doi: 10.3390/s20174953.
8
Recent Advances in Micro-Electro-Mechanical Devices for Controlled Drug Release Applications.
Front Bioeng Biotechnol. 2020 Jul 29;8:827. doi: 10.3389/fbioe.2020.00827. eCollection 2020.
9
A 3D-Printed Modular Microreservoir for Drug Delivery.
Micromachines (Basel). 2020 Jun 30;11(7):648. doi: 10.3390/mi11070648.
10
Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics.
Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21427-21437. doi: 10.1073/pnas.1909850116. Epub 2019 Oct 10.

本文引用的文献

1
Atomistic modeling of parylene-metal interactions for surface micro-structuring.
J Mol Model. 2011 Dec;17(12):3219-28. doi: 10.1007/s00894-011-0996-5. Epub 2011 Mar 3.
2
A Parylene Bellows Electrochemical Actuator.
J Microelectromech Syst. 2010 Jan 1;19(1):215-228. doi: 10.1109/jmems.2009.2032670.
3
Microchips and controlled-release drug reservoirs.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Jul-Aug;2(4):400-17. doi: 10.1002/wnan.93.
4
The rat as an animal model of Alzheimer's disease.
J Cell Mol Med. 2009 Jun;13(6):1034-42. doi: 10.1111/j.1582-4934.2009.00781.x. Epub 2009 May 11.
5
A passive MEMS drug delivery pump for treatment of ocular diseases.
Biomed Microdevices. 2009 Oct;11(5):959-70. doi: 10.1007/s10544-009-9313-9. Epub 2009 Apr 25.
6
The next generation of drug-delivery microdevices.
Clin Pharmacol Ther. 2009 May;85(5):544-7. doi: 10.1038/clpt.2009.4. Epub 2009 Feb 25.
7
Impact of nanotechnology on drug delivery.
ACS Nano. 2009 Jan 27;3(1):16-20. doi: 10.1021/nn900002m.
8
Rats in the genomic era.
Physiol Genomics. 2008 Feb 19;32(3):273-82. doi: 10.1152/physiolgenomics.00208.2007. Epub 2007 Nov 20.
9
Chronobiology, drug delivery, and chronotherapeutics.
Adv Drug Deliv Rev. 2007 Aug 31;59(9-10):828-51. doi: 10.1016/j.addr.2007.07.001. Epub 2007 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验