Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB-140, Los Angeles, CA 90089-1111, USA.
Biomed Microdevices. 2012 Jun;14(3):483-96. doi: 10.1007/s10544-011-9625-4.
We present the first implantable drug delivery system for controlled timing and location of dosing in small animals. Current implantable drug delivery devices do not provide control over these factors nor are they feasible for implantation in research animals as small as mice. Our system utilizes an integrated electrolysis micropump, is refillable, has an inert drug reservoir for broad drug compatibility, and is capable of adjustment to the delivery regimen while implanted. Electrochemical impedance spectroscopy (EIS) was used for characterization of electrodes on glass substrate and a flexible Parylene substrate. Benchtop testing of the electrolysis actuator resulted in flow rates from 1 μL/min to 34 μL/min on glass substrate and up to 6.8 μL/min on Parylene substrate. The fully integrated system generated a flow rate of 4.72 ± 0.35 μL/min under applied constant current of 1.0 mA while maintaining a power consumption of only ~3 mW. Finally, we demonstrated in vivo application of the system for anti-cancer drug delivery in mice.
我们提出了第一个可在小动物体内控制给药时间和位置的植入式药物输送系统。目前的植入式药物输送装置无法控制这些因素,也不适合植入像老鼠这样的小型研究动物。我们的系统利用集成的电解微泵,可再填充,具有惰性药物储库,可与广泛的药物兼容,并且在植入时能够调整给药方案。电化学阻抗谱 (EIS) 用于对玻璃基底和柔性聚对二甲苯基底上的电极进行特性描述。电解致动器的台式测试结果表明,在玻璃基底上的流速为 1 μL/min 至 34 μL/min,在聚对二甲苯基底上的流速高达 6.8 μL/min。在施加 1.0 mA 的恒定电流下,完全集成的系统产生了 4.72 ± 0.35 μL/min 的流速,同时仅消耗约 3 mW 的功率。最后,我们展示了该系统在小鼠体内抗癌药物输送中的应用。