Suppr超能文献

小麦品种 Sinvalocho MA 持久抗叶锈性基因及相关标记的遗传分析

Genetic analysis of leaf rust resistance genes and associated markers in the durable resistant wheat cultivar Sinvalocho MA.

机构信息

Instituto de Genética Ewald A Favret CICVyA-INTA CC25, 1712 Castelar, Buenos Aires, Argentina.

出版信息

Theor Appl Genet. 2012 May;124(7):1305-14. doi: 10.1007/s00122-012-1788-8. Epub 2012 Jan 26.

Abstract

In the cross of the durable leaf rust resistant wheat Sinvalocho MA and the susceptible line Gama6, four specific genes were identified: the seedling resistance gene Lr3, the adult plant resistance (APR) genes LrSV1 and LrSV2 coming from Sinvalocho MA, and the seedling resistance gene LrG6 coming from Gama6. Lr3 was previously mapped on 6BL in the same cross. LrSV1 was mapped on chromosome 2DS where resistance genes Lr22a and Lr22b have been reported. Results from rust reaction have shown that LrSV1 from Sinvalocho is not the same allele as Lr22b and an allelism test with Lr22a showed that they could be alleles or closely linked genes. LrSV1 was mapped in an 8.5-cM interval delimited by markers gwm296 distal and gwm261 proximal. Adult gene LrSV2 was mapped on chromosome 3BS, cosegregating with gwm533 in a 7.2-cM interval encompassed by markers gwm389 and gwm493, where other disease resistance genes are located, such as seedling gene Lr27 for leaf rust, Sr2 for stem rust, QTL Qfhs.ndsu-3BS for resistance to Fusarium gramineum and wheat powdery mildew resistance. The gene LrG6 was mapped on chromosome 2BL, with the closest marker gwm382 at 0.6 cM. Lines carrying LrSV1, LrSV2 and LrG6 tested under field natural infection conditions, showed low disease infection type and severity, suggesting that this kind of resistance can be explained by additive effects of APR and seedling resistance genes. The identification of new sources of resistance from South American land races and old varieties, supported by modern DNA technology, contributes to sustainability of agriculture through plant breeding.

摘要

在持久叶锈病抗性小麦 Sinvalocho MA 与易感系 Gama6 的杂交后代中,鉴定出了四个特定的基因:来自 Sinvalocho MA 的幼苗抗性基因 Lr3、成株抗性(APR)基因 LrSV1 和 LrSV2,以及来自 Gama6 的幼苗抗性基因 LrG6。Lr3 之前在同一杂交后代中被定位在 6BL 上。LrSV1 被定位在 2DS 染色体上,该染色体上已经报道了抗性基因 Lr22a 和 Lr22b。锈病反应的结果表明,来自 Sinvalocho 的 LrSV1 与 Lr22b 不是相同的等位基因,与 Lr22a 的等位基因测试表明它们可能是等位基因或紧密连锁的基因。LrSV1 被定位在由 gwm296 远端和 gwm261 近端标记限定的 8.5-cM 区间内。成株抗性基因 LrSV2 被定位在 3BS 染色体上,与 gwm533 共分离,该基因位于标记 gwm389 和 gwm493 之间,0.6cM 的区间内,该区间内还包含其他抗病基因,如叶锈病的幼苗基因 Lr27、茎锈病的 Sr2、对禾谷镰刀菌的 QTL Qfhs.ndsu-3BS 和对小麦白粉病的抗性。基因 LrG6 被定位在 2BL 染色体上,与最近的标记 gwm382 相距 0.6cM。在田间自然感染条件下,携带 LrSV1、LrSV2 和 LrG6 的系表现出低病害感染类型和严重程度,表明这种抗性可以通过 APR 和幼苗抗性基因的加性效应来解释。利用现代 DNA 技术,从南美地方品种和古老品种中鉴定新的抗性来源,有助于通过植物育种实现农业的可持续性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验