Suppr超能文献

兆碱基水平测序揭示了小麦基因和转座元件空间的对比组织和进化模式。

Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces.

机构信息

Institut National de la Recherche Agronomique, Université Blaise Pascal, Unité Mixte de Recherche 1095 Genetics Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France.

出版信息

Plant Cell. 2010 Jun;22(6):1686-701. doi: 10.1105/tpc.110.074187. Epub 2010 Jun 25.

Abstract

To improve our understanding of the organization and evolution of the wheat (Triticum aestivum) genome, we sequenced and annotated 13-Mb contigs (18.2 Mb) originating from different regions of its largest chromosome, 3B (1 Gb), and produced a 2x chromosome survey by shotgun Illumina/Solexa sequencing. All regions carried genes irrespective of their chromosomal location. However, gene distribution was not random, with 75% of them clustered into small islands containing three genes on average. A twofold increase of gene density was observed toward the telomeres likely due to high tandem and interchromosomal duplication events. A total of 3222 transposable elements were identified, including 800 new families. Most of them are complete but showed a highly nested structure spread over distances as large as 200 kb. A succession of amplification waves involving different transposable element families led to contrasted sequence compositions between the proximal and distal regions. Finally, with an estimate of 50,000 genes per diploid genome, our data suggest that wheat may have a higher gene number than other cereals. Indeed, comparisons with rice (Oryza sativa) and Brachypodium revealed that a high number of additional noncollinear genes are interspersed within a highly conserved ancestral grass gene backbone, supporting the idea of an accelerated evolution in the Triticeae lineages.

摘要

为了增进我们对小麦(Triticum aestivum)基因组组织和进化的理解,我们对来自其最大染色体 3B(1 Gb)不同区域的 13-Mb 连续序列(18.2 Mb)进行了测序和注释,并通过 Illumina/Solexa 测序进行了 2x 染色体普查。所有区域都携带基因,而不论其染色体位置如何。然而,基因的分布并非随机的,其中 75%的基因簇成平均含有三个基因的小岛屿。在靠近端粒的位置观察到基因密度增加了两倍,这可能是由于高度串联和染色体间重复事件所致。总共鉴定出 3222 个转座元件,包括 800 个新家族。它们大多是完整的,但表现出高度嵌套的结构,分布距离可达 200 kb 之远。一系列涉及不同转座元件家族的扩增波导致了近端和远端区域之间的序列组成差异。最后,根据二倍体基因组中约有 50000 个基因的估计,我们的数据表明,小麦的基因数量可能比其他谷物多。事实上,与水稻(Oryza sativa)和短柄草(Brachypodium)的比较表明,大量额外的非共线性基因散布在高度保守的祖先禾本科基因主干内,这支持了在小麦族系中加速进化的观点。

相似文献

8
A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7940-5. doi: 10.1073/pnas.1219082110. Epub 2013 Apr 22.
9
Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B.
Plant J. 2006 Nov;48(3):463-74. doi: 10.1111/j.1365-313X.2006.02891.x. Epub 2006 Sep 29.
10
Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome.
BMC Plant Biol. 2017 Nov 14;17(Suppl 1):183. doi: 10.1186/s12870-017-1120-5.

引用本文的文献

2
An integrated strategy involving high-throughput sequencing to characterize an unknown GM wheat event in Canada.
Plant Biotechnol J. 2024 Apr;22(4):904-914. doi: 10.1111/pbi.14232. Epub 2023 Dec 5.
3
Identification and Expressional Analysis of siRNAs Responsive to Infection in Wheat.
Int J Mol Sci. 2023 Nov 6;24(21):16005. doi: 10.3390/ijms242116005.
4
Sequencing 4.3 million mutations in wheat promoters to understand and modify gene expression.
Proc Natl Acad Sci U S A. 2023 Sep 19;120(38):e2306494120. doi: 10.1073/pnas.2306494120. Epub 2023 Sep 13.
5
An overview of genome-wide association mapping studies in Poaceae species (model crops: wheat and rice).
Mol Biol Rep. 2022 Dec;49(12):12077-12090. doi: 10.1007/s11033-022-08036-2. Epub 2022 Nov 2.
6
A Reappraisal of Polyploidy Events in Grasses (Poaceae) in a Rapidly Changing World.
Biology (Basel). 2022 Apr 21;11(5):636. doi: 10.3390/biology11050636.
7
Evolution and origin of bread wheat.
Plant Cell. 2022 Jul 4;34(7):2549-2567. doi: 10.1093/plcell/koac130.
8
tRNA-derived fragments from wheat are potentially involved in susceptibility to Fusarium head blight.
BMC Plant Biol. 2022 Jan 3;22(1):3. doi: 10.1186/s12870-021-03393-9.
9
Characterization and Use in Wheat Breeding of Leaf Rust Resistance Genes from Durable Varieties.
Biology (Basel). 2021 Nov 12;10(11):1168. doi: 10.3390/biology10111168.
10
Combining a New Exome Capture Panel With an Effective varBScore Algorithm Accelerates BSA-Based Gene Cloning in Wheat.
Front Plant Sci. 2020 Aug 13;11:1249. doi: 10.3389/fpls.2020.01249. eCollection 2020.

本文引用的文献

1
The origin of Triticum spelta and its free-threshing hexaploid relatives.
J Hered. 1946 Mar;37:81 107. doi: 10.1093/oxfordjournals.jhered.a105590.
3
Sequencing technologies - the next generation.
Nat Rev Genet. 2010 Jan;11(1):31-46. doi: 10.1038/nrg2626. Epub 2009 Dec 8.
4
The B73 maize genome: complexity, diversity, and dynamics.
Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.
5
Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs.
PLoS Genet. 2009 Nov;5(11):e1000740. doi: 10.1371/journal.pgen.1000740. Epub 2009 Nov 20.
6
Polyploidy and genome restructuring: a variety of outcomes.
Curr Opin Genet Dev. 2009 Dec;19(6):600-6. doi: 10.1016/j.gde.2009.10.005. Epub 2009 Nov 10.
8
Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15780-5. doi: 10.1073/pnas.0908195106. Epub 2009 Aug 26.
9
Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14908-13. doi: 10.1073/pnas.0902350106. Epub 2009 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验