Suppr超能文献

病毒家族遗传多样性的划分:以小核糖核酸病毒为例的方法与评估。

Partitioning the genetic diversity of a virus family: approach and evaluation through a case study of picornaviruses.

机构信息

Address correspondence to Alexander E. Gorbalenya,

出版信息

J Virol. 2012 Apr;86(7):3890-904. doi: 10.1128/JVI.07173-11. Epub 2012 Jan 25.

Abstract

The recent advent of genome sequences as the only source available to classify many newly discovered viruses challenges the development of virus taxonomy by expert virologists who traditionally rely on extensive virus characterization. In this proof-of-principle study, we address this issue by presenting a computational approach (DEmARC) to classify viruses of a family into groups at hierarchical levels using a sole criterion-intervirus genetic divergence. To quantify genetic divergence, we used pairwise evolutionary distances (PEDs) estimated by maximum likelihood inference on a multiple alignment of family-wide conserved proteins. PEDs were calculated for all virus pairs, and the resulting distribution was modeled via a mixture of probability density functions. The model enables the quantitative inference of regions of distance discontinuity in the family-wide PED distribution, which define the levels of hierarchy. For each level, a limit on genetic divergence, below which two viruses join the same group, was objectively selected among a set of candidates by minimizing violations of intragroup PEDs to the limit. In a case study, we applied the procedure to hundreds of genome sequences of picornaviruses and extensively evaluated it by modulating four key parameters. It was found that the genetics-based classification largely tolerates variations in virus sampling and multiple alignment construction but is affected by the choice of protein and the measure of genetic divergence. In an accompanying paper (C. Lauber and A. E. Gorbalenya, J. Virol. 86:3905-3915, 2012), we analyze the substantial insight gained with the genetics-based classification approach by comparing it with the expert-based picornavirus taxonomy.

摘要

最近,基因组序列的出现成为了分类许多新发现病毒的唯一依据,这对传统上依赖广泛病毒特征描述的专家病毒学家进行病毒分类提出了挑战。在这项原理验证研究中,我们通过提出一种计算方法(DEmARC)来解决这个问题,该方法使用单一标准——病毒间遗传距离,将一个家族的病毒分为不同层次的组。为了量化遗传距离,我们使用基于最大似然推断的家族广泛保守蛋白多重比对来估计成对进化距离(PED)。计算了所有病毒对的 PED,并通过概率密度函数的混合模型对所得分布进行建模。该模型能够对家族范围内 PED 分布中的距离不连续区域进行定量推断,从而定义层次结构的级别。对于每个级别,通过最小化组内 PED 对限制的违反来从一组候选限制中客观选择遗传距离的限制,低于该限制,两个病毒将加入同一个组。在一个案例研究中,我们将该程序应用于数百个小核糖核酸病毒的基因组序列,并通过调节四个关键参数对其进行了广泛评估。结果表明,基于遗传学的分类在很大程度上容忍病毒采样和多重比对构建的变化,但受蛋白质选择和遗传距离度量的影响。在一篇伴随论文(C. Lauber 和 A. E. Gorbalenya,J. Virol. 86:3905-3915, 2012)中,我们通过将基于遗传学的分类方法与专家小核糖核酸病毒分类法进行比较,分析了该方法所获得的实质性见解。

相似文献

1
Partitioning the genetic diversity of a virus family: approach and evaluation through a case study of picornaviruses.
J Virol. 2012 Apr;86(7):3890-904. doi: 10.1128/JVI.07173-11. Epub 2012 Jan 25.
3
4
Genetics-based classification of filoviruses calls for expanded sampling of genomic sequences.
Viruses. 2012 Sep;4(9):1425-37. doi: 10.3390/v4091425. Epub 2012 Aug 31.
6
Chickens host diverse picornaviruses originated from potential interspecies transmission with recombination.
J Gen Virol. 2014 Sep;95(Pt 9):1929-1944. doi: 10.1099/vir.0.066597-0. Epub 2014 Jun 6.
10
Picornaviridae-the ever-growing virus family.
Arch Virol. 2018 Feb;163(2):299-317. doi: 10.1007/s00705-017-3614-8. Epub 2017 Oct 20.

引用本文的文献

2
Binomial names for virus species: the rediscovery of an old idea.
J Gen Virol. 2025 Jun;106(6). doi: 10.1099/jgv.0.002102.
5
Giant RNA genomes: Roles of host, translation elongation, genome architecture, and proteome in nidoviruses.
Proc Natl Acad Sci U S A. 2025 Feb 18;122(7):e2413675122. doi: 10.1073/pnas.2413675122. Epub 2025 Feb 10.
7
Exploration of the genetic landscape of bacterial dsDNA viruses reveals an ANI gap amid extensive mosaicism.
mSystems. 2025 Feb 18;10(2):e0166124. doi: 10.1128/msystems.01661-24. Epub 2025 Jan 29.
8
GRAViTy-V2: a grounded viral taxonomy application.
NAR Genom Bioinform. 2024 Dec 18;6(4):lqae183. doi: 10.1093/nargab/lqae183. eCollection 2024 Dec.
9
VISTA: A Tool for Fast Taxonomic Assignment of Viral Genome Sequences.
Genomics Proteomics Bioinformatics. 2025 May 10;23(1). doi: 10.1093/gpbjnl/qzae082.
10
Rapid taxonomic categorization of short, abundant virus sequences for ecological analyses.
Ecol Evol. 2024 Jun 17;14(6):e11501. doi: 10.1002/ece3.11501. eCollection 2024 Jun.

本文引用的文献

2
Genetic relationship between cocirculating Human enteroviruses species C.
PLoS One. 2011;6(9):e24823. doi: 10.1371/journal.pone.0024823. Epub 2011 Sep 12.
3
Genus-specific substitution rate variability among picornaviruses.
J Virol. 2011 Aug;85(15):7942-7. doi: 10.1128/JVI.02535-10. Epub 2011 May 25.
4
RDP3: a flexible and fast computer program for analyzing recombination.
Bioinformatics. 2010 Oct 1;26(19):2462-3. doi: 10.1093/bioinformatics/btq467. Epub 2010 Aug 26.
5
Viral mutation rates.
J Virol. 2010 Oct;84(19):9733-48. doi: 10.1128/JVI.00694-10. Epub 2010 Jul 21.
6
Partitioning biological data with transitivity clustering.
Nat Methods. 2010 Jun;7(6):419-20. doi: 10.1038/nmeth0610-419.
7
Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments.
Virology. 2010 May 25;401(1):70-9. doi: 10.1016/j.virol.2010.02.002. Epub 2010 Mar 5.
8
DNA barcoding: a six-question tour to improve users' awareness about the method.
Brief Bioinform. 2010 Jul;11(4):440-53. doi: 10.1093/bib/bbq003. Epub 2010 Feb 15.
9
Practical application of bioinformatics by the multidisciplinary VIZIER consortium.
Antiviral Res. 2010 Aug;87(2):95-110. doi: 10.1016/j.antiviral.2010.02.005. Epub 2010 Feb 11.
10
GenBank.
Nucleic Acids Res. 2010 Jan;38(Database issue):D46-51. doi: 10.1093/nar/gkp1024. Epub 2009 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验