Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
J Am Chem Soc. 2012 Feb 8;134(5):2535-8. doi: 10.1021/ja2114344. Epub 2012 Jan 26.
The electrically driven resistance change of metal oxides, called bipolar memristive switching, is a fascinating phenomenon in the development of next-generation nonvolatile memory alternatives to flash technology. However, our understanding of the nature of bipolar memristive switching is unfortunately far from comprehensive, especially the relationship between the electrical transport and the local nonstoichiometry. Here we demonstrate that the coexistence of anion and cation defects is critical to the transport properties of NiO, one of the most promising memristive oxides, by utilizing first-principles calculations. We find that, in the presence of both nickel and oxygen defects, which must exist in any real experimental systems, carrier concentrations of holes generated by nickel defects can be modulated by the presence or absence of oxygen defects around the nickel defect. Such alternation of local nonstoichiometry can be understood in terms of an oxygen ion drift induced by an external electric field. This implication provides a foundation for understanding universally the nature of bipolar memristive switching in various p-type metal oxides.
金属氧化物的电驱动电阻变化,称为双极性忆阻开关,是下一代非易失性存储器替代闪存技术发展中的一个引人入胜的现象。然而,我们对双极性忆阻开关的本质的理解却很不幸地远远不够全面,特别是电输运和局部非化学计量比之间的关系。在这里,我们通过第一性原理计算证明了阴离子和阳离子缺陷的共存对于 NiO(最有前途的忆阻氧化物之一)的输运性质至关重要。我们发现,在镍和氧缺陷的共同存在下,在任何实际的实验系统中都必须存在载流子浓度由镍缺陷产生的空穴可以通过镍缺陷周围氧缺陷的存在与否来调节。这种局部非化学计量比的交替可以用外部电场引起的氧离子漂移来理解。这一含义为理解各种 p 型金属氧化物中双极性忆阻开关的本质提供了基础。