Department of Mathematics and Statistics, Boston University, Boston, MA, USA.
J Neurosci Methods. 2012 Apr 15;205(2):295-304. doi: 10.1016/j.jneumeth.2011.12.021. Epub 2012 Jan 17.
A method is presented capable of disambiguating the relative influence of statistical covariates upon neural spiking activity. The method, an extension of the generalized linear model (GLM) methodology introduced in Truccolo et al. (2005) to analyze neural spiking data, exploits projection operations motivated by a geometry present in the Fisher information of the GLM maximum likelihood parameter estimator. By exploiting these projections, neural activity can be divided into three categories. These three categories, neural activity due solely to a set of covariates of interest, neural activity due solely to a set of uninteresting, or nuisance, covariates, and neural activity that cannot be unequivocally assigned to either set of covariates, can be associated with physical variables such as time, position, head-direction and velocity. This association allows the analysis of neural activity that can, for example, be due solely to temporal influence, irrespective of other, identified, influences. The method is applied in simulation to a rat exploring a temporally modulated place field. A portion of the analysis reported in MacDonald et al. (2011), using the methodology described herein, is reproduced. This analysis demonstrates the temporal bridging of a delay period in a sequential memory task by firing activity of cells present in the rodent hippocampus that cannot be explained by rodent position, head direction or velocity.
提出了一种能够区分统计协变量对神经尖峰活动相对影响的方法。该方法是 Truccolo 等人(2005 年)引入的广义线性模型(GLM)方法的扩展,用于分析神经尖峰数据,利用 GLM 最大似然参数估计的 Fisher 信息中存在的投影操作。通过利用这些投影,可以将神经活动分为三类。这三类活动分别是仅由一组感兴趣的协变量引起的活动、仅由一组不感兴趣的或干扰性的协变量引起的活动,以及无法明确分配给这两组协变量之一的活动,它们可以与时间、位置、头方向和速度等物理变量相关联。这种关联允许对例如仅由于时间影响而引起的神经活动进行分析,而不受其他已识别的影响的影响。该方法在模拟中应用于一只探索随时间调制的位置场的大鼠。重现了 MacDonald 等人(2011 年)使用本文描述的方法报告的一部分分析。该分析表明,在顺序记忆任务中,通过不能用啮齿动物位置、头方向或速度解释的啮齿动物海马体中细胞的放电活动来桥接延迟期。