Suppr超能文献

部分混淆协变量对神经峰发放电的统计分析。

The statistical analysis of partially confounded covariates important to neural spiking.

机构信息

Department of Mathematics and Statistics, Boston University, Boston, MA, USA.

出版信息

J Neurosci Methods. 2012 Apr 15;205(2):295-304. doi: 10.1016/j.jneumeth.2011.12.021. Epub 2012 Jan 17.

Abstract

A method is presented capable of disambiguating the relative influence of statistical covariates upon neural spiking activity. The method, an extension of the generalized linear model (GLM) methodology introduced in Truccolo et al. (2005) to analyze neural spiking data, exploits projection operations motivated by a geometry present in the Fisher information of the GLM maximum likelihood parameter estimator. By exploiting these projections, neural activity can be divided into three categories. These three categories, neural activity due solely to a set of covariates of interest, neural activity due solely to a set of uninteresting, or nuisance, covariates, and neural activity that cannot be unequivocally assigned to either set of covariates, can be associated with physical variables such as time, position, head-direction and velocity. This association allows the analysis of neural activity that can, for example, be due solely to temporal influence, irrespective of other, identified, influences. The method is applied in simulation to a rat exploring a temporally modulated place field. A portion of the analysis reported in MacDonald et al. (2011), using the methodology described herein, is reproduced. This analysis demonstrates the temporal bridging of a delay period in a sequential memory task by firing activity of cells present in the rodent hippocampus that cannot be explained by rodent position, head direction or velocity.

摘要

提出了一种能够区分统计协变量对神经尖峰活动相对影响的方法。该方法是 Truccolo 等人(2005 年)引入的广义线性模型(GLM)方法的扩展,用于分析神经尖峰数据,利用 GLM 最大似然参数估计的 Fisher 信息中存在的投影操作。通过利用这些投影,可以将神经活动分为三类。这三类活动分别是仅由一组感兴趣的协变量引起的活动、仅由一组不感兴趣的或干扰性的协变量引起的活动,以及无法明确分配给这两组协变量之一的活动,它们可以与时间、位置、头方向和速度等物理变量相关联。这种关联允许对例如仅由于时间影响而引起的神经活动进行分析,而不受其他已识别的影响的影响。该方法在模拟中应用于一只探索随时间调制的位置场的大鼠。重现了 MacDonald 等人(2011 年)使用本文描述的方法报告的一部分分析。该分析表明,在顺序记忆任务中,通过不能用啮齿动物位置、头方向或速度解释的啮齿动物海马体中细胞的放电活动来桥接延迟期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58a6/3976545/7f39fadec493/nihms-360200-f0001.jpg

相似文献

1
The statistical analysis of partially confounded covariates important to neural spiking.部分混淆协变量对神经峰发放电的统计分析。
J Neurosci Methods. 2012 Apr 15;205(2):295-304. doi: 10.1016/j.jneumeth.2011.12.021. Epub 2012 Jan 17.

引用本文的文献

1
Efficient spline regression for neural spiking data.高效样条回归在神经脉冲数据中的应用。
PLoS One. 2021 Oct 13;16(10):e0258321. doi: 10.1371/journal.pone.0258321. eCollection 2021.
2
Multitaper estimates of phase-amplitude coupling.多谱线估计的相位-幅度耦合。
J Neural Eng. 2021 Sep 17;18(5). doi: 10.1088/1741-2552/ac1deb.
3
Hippocampal state transitions at the boundaries between trial epochs.海马体在试验时段边界的状态转变。
Hippocampus. 2020 Jun;30(6):582-595. doi: 10.1002/hipo.23180. Epub 2019 Dec 3.
6
Hippocampal "time cells": time versus path integration.海马“时间细胞”:时间与路径整合。
Neuron. 2013 Jun 19;78(6):1090-101. doi: 10.1016/j.neuron.2013.04.015. Epub 2013 May 23.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验