Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.
Antimicrob Agents Chemother. 2012 Apr;56(4):1735-43. doi: 10.1128/AAC.05742-11. Epub 2012 Jan 30.
The antigen 85 (Ag85) protein family, consisting of Ag85A, -B, and -C, is vital for Mycobacterium tuberculosis due to its role in cell envelope biogenesis. The mycoloyl transferase activity of these proteins generates trehalose dimycolate (TDM), an envelope lipid essential for M. tuberculosis virulence, and cell wall arabinogalactan-linked mycolic acids. Inhibition of these enzymes through substrate analogs hinders growth of mycobacteria, but a link to mycolic acid synthesis has not been established. In this study, we characterized a novel inhibitor of Ag85C, 2-amino-6-propyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (I3-AG85). I3-AG85 was isolated from a panel of four inhibitors that exhibited structure- and dose-dependent inhibition of M. tuberculosis division in broth culture. I3-AG85 also inhibited M. tuberculosis survival in infected primary macrophages. Importantly, it displayed an identical MIC against the drug-susceptible H37Rv reference strain and a panel of extensively drug-resistant/multidrug-resistant M. tuberculosis strains. Nuclear magnetic resonance analysis indicated binding of I3-AG85 to Ag85C, similar to its binding to the artificial substrate octylthioglucoside. Quantification of mycolic acid-linked lipids of the M. tuberculosis envelope showed a specific blockade of TDM synthesis. This was accompanied by accumulation of trehalose monomycolate, while the overall mycolic acid abundance remained unchanged. Inhibition of Ag85C activity also disrupted the integrity of the M. tuberculosis envelope. I3-AG85 inhibited the division of and reduced TDM synthesis in an M. tuberculosis strain deficient in Ag85C. Our results indicate that Ag85 proteins are promising targets for novel antimycobacterial drug design.
抗原 85(Ag85)蛋白家族由 Ag85A、-B 和 -C 组成,由于其在细胞包膜生物发生中的作用,对结核分枝杆菌至关重要。这些蛋白的酰基转移酶活性生成海藻糖二分枝菌酸(TDM),这是分枝杆菌毒力和细胞壁阿拉伯半乳聚糖连接的分枝菌酸所必需的包膜脂质。通过底物类似物抑制这些酶会阻碍分枝杆菌的生长,但尚未建立与分枝菌酸合成的联系。在这项研究中,我们对 Ag85C 的一种新型抑制剂 2-氨基-6-丙基-4,5,6,7-四氢-1-苯并噻吩-3-甲腈(I3-AG85)进行了表征。I3-AG85 是从一组四种抑制剂中分离出来的,它们在肉汤培养中表现出结构和剂量依赖性的分枝杆菌分裂抑制作用。I3-AG85 还抑制感染原代巨噬细胞的分枝杆菌存活。重要的是,它对药敏性 H37Rv 参考株和一组广泛耐药/多重耐药分枝杆菌株显示出相同的 MIC。核磁共振分析表明 I3-AG85 与 Ag85C 结合,类似于其与人工底物辛硫基葡萄糖苷的结合。分枝杆菌包膜中连接的分枝菌酸脂质的定量分析显示 TDM 合成的特异性阻断。这伴随着海藻糖单分枝菌酸的积累,而总的分枝菌酸丰度保持不变。Ag85C 活性的抑制也破坏了分枝杆菌包膜的完整性。I3-AG85 抑制了缺乏 Ag85C 的分枝杆菌菌株的分裂和 TDM 合成。我们的结果表明,Ag85 蛋白是新型抗分枝杆菌药物设计的有前途的靶标。