Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
mBio. 2012 Jan 31;3(1). doi: 10.1128/mBio.00293-11. Print 2012.
The acquisition, delivery, and incorporation of metals into their respective metalloproteins are important cellular processes. These processes are tightly controlled in order to prevent exposure of cells to free-metal concentrations that could yield oxidative damage. Copper (Cu) is one such metal that is required as a cofactor in a variety of proteins. However, when present in excessive amounts, Cu is toxic due to its oxidative capability. Cytochrome c oxidases (Coxs) are among the metalloproteins whose assembly and activity require the presence of Cu in their catalytic subunits. In this study, we focused on the acquisition of Cu for incorporation into the heme-Cu binuclear center of the cbb(3)-type Cox (cbb(3)-Cox) in the facultative phototroph Rhodobacter capsulatus. Genetic screens identified a cbb(3)-Cox defective mutant that requires Cu(2+) supplementation to produce an active cbb(3)-Cox. Complementation of this mutant using wild-type genomic libraries unveiled a novel gene (ccoA) required for cbb(3)-Cox biogenesis. In the absence of CcoA, the cellular Cu content decreases and cbb(3)-Cox assembly and activity become defective. CcoA shows homology to major facilitator superfamily (MFS)-type transporter proteins. Members of this family are known to transport small solutes or drugs, but so far, no MFS protein has been implicated in cbb(3)-Cox biogenesis. These findings provide novel insights into the maturation and assembly of membrane-integral metalloproteins and on a hitherto-unknown function(s) of MFS-type transporters in bacterial Cu acquisition.
Biogenesis of energy-transducing membrane-integral enzymes, like the heme copper-containing cytochrome c oxidases, and the acquisition of transition metals, like copper, as their catalytic cofactors are vital processes for all cells. These widespread and well-controlled processes are poorly understood in all organisms, including bacteria. Defects in these processes lead to severe mitochondrial diseases in humans and poor crop yields in plants. In this study, using the facultative phototroph Rhodobacter capsulatus as a model organism, we report on the discovery of a novel major facilitator superfamily (MFS)-type transporter (CcoA) that affects cellular copper content and cbb(3)-type cytochrome c oxidase production in bacteria.
金属的获取、传递和整合到各自的金属蛋白中是重要的细胞过程。为了防止细胞暴露于可能产生氧化损伤的游离金属浓度下,这些过程受到严格控制。铜 (Cu) 是一种需要作为多种蛋白质辅助因子的金属。然而,当过量存在时,由于其氧化能力,Cu 是有毒的。细胞色素 c 氧化酶 (Coxs) 是金属蛋白之一,其组装和活性需要其催化亚基中存在 Cu。在这项研究中,我们专注于获取 Cu 以整合到兼性光养生物 Rhodobacter capsulatus 中的 cbb(3)-型 Cox (cbb(3)-Cox) 的血红素-Cu 双核中心。遗传筛选确定了一个 cbb(3)-Cox 缺陷突变体,该突变体需要 Cu(2+) 补充才能产生活性 cbb(3)-Cox。使用野生型基因组文库对该突变体进行互补揭示了一个新基因 (ccoA),该基因是 cbb(3)-Cox 生物发生所必需的。在没有 CcoA 的情况下,细胞内的 Cu 含量减少,cbb(3)-Cox 的组装和活性受损。CcoA 与主要易化剂超家族 (MFS)-型转运蛋白具有同源性。该家族的成员已知可转运小溶质或药物,但迄今为止,尚未有 MFS 蛋白与 cbb(3)-Cox 生物发生有关。这些发现为膜整合金属蛋白的成熟和组装以及 MFS 型转运蛋白在细菌 Cu 获取中的未知功能提供了新的见解。
能量转导膜整合酶的生物发生,如血红素铜细胞色素 c 氧化酶,以及过渡金属(如铜)作为其催化辅因子的获取,是所有细胞的重要过程。这些广泛且受到良好控制的过程在所有生物体中,包括细菌,都知之甚少。这些过程的缺陷会导致人类严重的线粒体疾病和植物的低作物产量。在这项研究中,使用兼性光养生物 Rhodobacter capsulatus 作为模型生物,我们报告了一种新型主要易化剂超家族 (MFS)-型转运蛋白 (CcoA) 的发现,该转运蛋白影响细菌的细胞铜含量和 cbb(3)-型细胞色素 c 氧化酶的产生。