Suppr超能文献

交替访问 ATP 结合盒蛋白囊性纤维化跨膜电导调节蛋白 (ABCC7) 的跨膜结构域。

Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7).

机构信息

Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.

Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.

出版信息

J Biol Chem. 2012 Mar 23;287(13):10156-10165. doi: 10.1074/jbc.M112.342972. Epub 2012 Feb 1.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a member of the ATP-binding cassette (ABC) protein family, most members of which act as active transporters. Actively transporting ABC proteins are thought to alternate between "outwardly facing" and "inwardly facing" conformations of the transmembrane substrate pathway. In CFTR, it is assumed that the outwardly facing conformation corresponds to the channel open state, based on homology with other ABC proteins. We have used patch clamp recording to quantify the rate of access of cysteine-reactive probes to cysteines introduced into two different transmembrane regions of CFTR from both the intracellular and extracellular solutions. Two probes, the large [2-sulfonatoethyl]methanethiosulfonate (MTSES) molecule and permeant Au(CN)(2)(-) ions, were applied to either side of the membrane to modify cysteines substituted for Leu-102 (first transmembrane region) and Thr-338 (sixth transmembrane region). Channel opening and closing were altered by mutations in the nucleotide binding domains of the channel. We find that, for both MTSES and Au(CN)(2)(-), access to these two cysteines from the cytoplasmic side is faster in open channels, whereas access to these same sites from the extracellular side is faster in closed channels. These results are consistent with alternating access to the transmembrane regions, however with the open state facing inwardly and the closed state facing outwardly. Our findings therefore prompt revision of current CFTR structural and mechanistic models, as well as having broader implications for transport mechanisms in all ABC proteins. Our results also suggest possible locations of both functional and dysfunctional ("vestigial") gates within the CFTR permeation pathway.

摘要

囊性纤维化跨膜电导调节因子 (CFTR) 氯离子通道是 ATP 结合盒 (ABC) 蛋白家族的成员,该家族的大多数成员都作为主动转运体发挥作用。人们认为,主动转运的 ABC 蛋白在跨膜底物途径的“外向”和“内向”构象之间交替。在 CFTR 中,基于与其他 ABC 蛋白的同源性,假定外向构象对应于通道开放状态。我们使用膜片钳记录技术,从细胞内和细胞外溶液中定量测定进入 CFTR 两个不同跨膜区域的半胱氨酸反应探针的进入速度。两种探针,大的[2-磺基乙基]甲硫基磺酸盐 (MTSES) 分子和可渗透的 Au(CN)(2)(-) 离子,被应用于膜的两侧,以修饰取代亮氨酸 102(第一跨膜区)和苏氨酸 338(第六跨膜区)的半胱氨酸。通道的核苷酸结合域突变会改变通道的开启和关闭。我们发现,对于 MTSES 和 Au(CN)(2)(-),从细胞质侧进入这两个半胱氨酸的速度在开放通道中更快,而从细胞外侧进入相同位点的速度在关闭通道中更快。这些结果与跨膜区域的交替进入一致,但开放状态面向内部,关闭状态面向外部。因此,我们的发现促使对当前 CFTR 结构和机制模型进行修订,并对所有 ABC 蛋白的转运机制产生更广泛的影响。我们的研究结果还表明,在 CFTR 渗透途径中,功能性和非功能性(“残余”)门的可能位置。

相似文献

3
The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
Biochemistry. 2015 Jun 23;54(24):3839-50. doi: 10.1021/acs.biochem.5b00427. Epub 2015 Jun 10.
5
Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).
J Gen Physiol. 2011 Nov;138(5):495-507. doi: 10.1085/jgp.201110705.
6
Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18865-70. doi: 10.1073/pnas.0806306105. Epub 2008 Nov 19.
7
Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
Biochim Biophys Acta. 2012 Mar;1818(3):851-60. doi: 10.1016/j.bbamem.2011.12.025. Epub 2012 Jan 2.
8
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS.
J Biol Chem. 2015 Sep 18;290(38):22891-906. doi: 10.1074/jbc.M115.665125. Epub 2015 Jul 30.
10
Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Gen Physiol. 2011 Aug;138(2):165-78. doi: 10.1085/jgp.201110605. Epub 2011 Jul 11.

引用本文的文献

1
A transistor model for the cystic fibrosis transmembrane conductance regulator.
Biophys Rep (N Y). 2023 Apr 14;3(2):100108. doi: 10.1016/j.bpr.2023.100108. eCollection 2023 Jun 14.
2
Structural mechanisms of CFTR function and dysfunction.
J Gen Physiol. 2018 Apr 2;150(4):539-570. doi: 10.1085/jgp.201711946. Epub 2018 Mar 26.
3
Conformational change of the extracellular parts of the CFTR protein during channel gating.
Cell Mol Life Sci. 2018 Aug;75(16):3027-3038. doi: 10.1007/s00018-018-2777-0. Epub 2018 Feb 14.
4
Architecture and functional properties of the CFTR channel pore.
Cell Mol Life Sci. 2017 Jan;74(1):67-83. doi: 10.1007/s00018-016-2389-5. Epub 2016 Oct 3.
5
How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).
J Biol Chem. 2016 Jul 8;291(28):14483-98. doi: 10.1074/jbc.M116.721415. Epub 2016 May 12.
6
Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.
J Biol Chem. 2016 Jan 22;291(4):1854-1865. doi: 10.1074/jbc.M115.704809. Epub 2015 Dec 1.
7
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS.
J Biol Chem. 2015 Sep 18;290(38):22891-906. doi: 10.1074/jbc.M115.665125. Epub 2015 Jul 30.
8
The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
Biochemistry. 2015 Jun 23;54(24):3839-50. doi: 10.1021/acs.biochem.5b00427. Epub 2015 Jun 10.
9
Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.
J Biol Chem. 2015 Jun 19;290(25):15855-15865. doi: 10.1074/jbc.M115.656181. Epub 2015 May 5.
10
The cystic fibrosis transmembrane conductance regulator is an extracellular chloride sensor.
Pflugers Arch. 2015 Aug;467(8):1783-94. doi: 10.1007/s00424-014-1618-8. Epub 2014 Oct 4.

本文引用的文献

1
Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
Biochim Biophys Acta. 2012 Mar;1818(3):851-60. doi: 10.1016/j.bbamem.2011.12.025. Epub 2012 Jan 2.
2
Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).
J Gen Physiol. 2011 Nov;138(5):495-507. doi: 10.1085/jgp.201110705.
3
The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate.
J Biol Chem. 2011 Dec 9;286(49):42647-42654. doi: 10.1074/jbc.M111.292268. Epub 2011 Sep 19.
4
Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel.
J Membr Biol. 2011 Oct;243(1-3):15-23. doi: 10.1007/s00232-011-9388-0. Epub 2011 Jul 28.
6
Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Gen Physiol. 2011 Aug;138(2):165-78. doi: 10.1085/jgp.201110605. Epub 2011 Jul 11.
7
Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
J Gen Physiol. 2010 Sep;136(3):293-309. doi: 10.1085/jgp.201010480.
8
Domain location within the cystic fibrosis transmembrane conductance regulator protein investigated by electron microscopy and gold labelling.
Biochim Biophys Acta. 2011 Jan;1808(1):399-404. doi: 10.1016/j.bbamem.2010.08.012. Epub 2010 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验