Suppr超能文献

脑图像的多位点基因分析。

Multilocus genetic analysis of brain images.

作者信息

Hibar Derrek P, Kohannim Omid, Stein Jason L, Chiang Ming-Chang, Thompson Paul M

机构信息

Laboratory of Neuro Imaging, Department of Neurology, University of California Los Angeles School of Medicine Los Angeles, CA, USA.

出版信息

Front Genet. 2011 Oct 21;2:73. doi: 10.3389/fgene.2011.00073. eCollection 2011.

Abstract

The quest to identify genes that influence disease is now being extended to find genes that affect biological markers of disease, or endophenotypes. Brain images, in particular, provide exquisitely detailed measures of anatomy, function, and connectivity in the living brain, and have identified characteristic features for many neurological and psychiatric disorders. The emerging field of imaging genomics is discovering important genetic variants associated with brain structure and function, which in turn influence disease risk and fundamental cognitive processes. Statistical approaches for testing genetic associations are not straightforward to apply to brain images because the data in brain images is spatially complex and generally high dimensional. Neuroimaging phenotypes typically include 3D maps across many points in the brain, fiber tracts, shape-based analyses, and connectivity matrices, or networks. These complex data types require new methods for data reduction and joint consideration of the image and the genome. Image-wide, genome-wide searches are now feasible, but they can be greatly empowered by sparse regression or hierarchical clustering methods that isolate promising features, boosting statistical power. Here we review the evolution of statistical approaches to assess genetic influences on the brain. We outline the current state of multivariate statistics in imaging genomics, and future directions, including meta-analysis. We emphasize the power of novel multivariate approaches to discover reliable genetic influences with small effect sizes.

摘要

识别影响疾病的基因的探索如今正扩展到寻找影响疾病生物标志物或内表型的基因。特别是脑部图像,它能提供活体大脑中极其详细的解剖结构、功能和连通性测量数据,并已确定了许多神经和精神疾病的特征。新兴的影像基因组学领域正在发现与脑结构和功能相关的重要基因变异,这些变异进而影响疾病风险和基本认知过程。用于测试基因关联的统计方法应用于脑部图像并非易事,因为脑部图像中的数据在空间上很复杂且通常维度很高。神经影像表型通常包括大脑中许多点的三维图谱、纤维束、基于形状的分析以及连通性矩阵或网络。这些复杂的数据类型需要新的数据降维方法以及对图像和基因组的联合考虑。全图像、全基因组搜索现在是可行的,但通过隔离有前景特征的稀疏回归或层次聚类方法可以极大地增强其效力,提高统计功效。在这里,我们回顾评估基因对大脑影响的统计方法的演变。我们概述了影像基因组学中多元统计的当前状态以及未来方向,包括荟萃分析。我们强调新型多元方法在发现效应量小的可靠基因影响方面的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5673/3268626/ae315b207e92/fgene-02-00073-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验