Suppr超能文献

用于检测急性胸痛患者中显著冠状动脉疾病的自动计算机辅助算法的可行性。

Feasibility of an automatic computer-assisted algorithm for the detection of significant coronary artery disease in patients presenting with acute chest pain.

机构信息

Division of Cardiology, Eulji University Hospital, Daejeon, Republic of Korea.

出版信息

Eur J Radiol. 2012 Apr;81(4):e640-6. doi: 10.1016/j.ejrad.2012.01.017. Epub 2012 Feb 2.

Abstract

Automatic computer-assisted detection (auto-CAD) of significant coronary artery disease (CAD) in coronary computed tomography angiography (cCTA) has been shown to have relatively high accuracy. However, to date, scarce data are available regarding the performance of auto-CAD in the setting of acute chest pain. This study sought to demonstrate the feasibility of an auto-CAD algorithm for cCTA in patients presenting with acute chest pain. We retrospectively investigated 398 consecutive patients (229 male, mean age 50±21 years) who had acute chest pain and underwent cCTA between Apr 2007 and Jan 2011 in the emergency department (ED). All cCTA data were analyzed using an auto-CAD algorithm for the detection of >50% CAD on cCTA. The accuracy of auto-CAD was compared with the formal radiology report. In 380 of 398 patients (18 were excluded due to failure of data processing), per-patient analysis of auto-CAD revealed the following: sensitivity 94%, specificity 63%, positive predictive value (PPV) 76%, and negative predictive value (NPV) 89%. After the exclusion of 37 cases that were interpreted as invalid by the auto-CAD algorithm, the NPV was further increased up to 97%, considering the false-negative cases in the formal radiology report, and was confirmed by subsequent invasive angiogram during the index visit. We successfully demonstrated the high accuracy of an auto-CAD algorithm, compared with the formal radiology report, for the detection of >50% CAD on cCTA in the setting of acute chest pain. The auto-CAD algorithm can be used to facilitate the decision-making process in the ED.

摘要

自动计算机辅助检测(auto-CAD)在冠状动脉计算机断层血管造影(cCTA)中对显著冠状动脉疾病(CAD)的检测具有相对较高的准确性。然而,迄今为止,关于在急性胸痛背景下使用 auto-CAD 的性能的数据很少。本研究旨在证明用于急性胸痛患者的 cCTA 的 auto-CAD 算法的可行性。我们回顾性研究了 2007 年 4 月至 2011 年 1 月期间在急诊科就诊的 398 例连续急性胸痛患者(229 例男性,平均年龄 50±21 岁),所有 cCTA 数据均使用 auto-CAD 算法分析以检测 cCTA 上的 >50% CAD。将 auto-CAD 的准确性与正式放射学报告进行比较。在 398 例患者中的 380 例(由于数据处理失败排除了 18 例)中,每例患者的 auto-CAD 分析结果如下:敏感性 94%,特异性 63%,阳性预测值(PPV)为 76%,阴性预测值(NPV)为 89%。在排除 37 例被 auto-CAD 算法判断为无效的病例后,考虑到正式放射学报告中的假阴性病例,NPV 进一步提高到 97%,并在索引就诊期间通过随后的有创血管造影得到证实。我们成功地证明了在急性胸痛背景下,与正式放射学报告相比,cCTA 上的>50% CAD 的 auto-CAD 算法具有很高的准确性。该 auto-CAD 算法可用于促进急诊科的决策过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验