Suppr超能文献

心率参数的非线性分类作为癫痫发生的生物标志物。

Non-linear classification of heart rate parameters as a biomarker for epileptogenesis.

机构信息

Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.

出版信息

Epilepsy Res. 2012 Jun;100(1-2):59-66. doi: 10.1016/j.eplepsyres.2012.01.008. Epub 2012 Feb 2.

Abstract

PURPOSE

To characterize a biomarker for epileptogenesis based on cardiac interbeat interval characteristics.

METHODS

Electrocardiograph (ECG) and electroencephalogram (EEG) signals were recorded from freely moving rats (n = 23) before status epilepticus (SE) induced by i.p. pilocarpine (PILO) injection as baseline, and on days 1, 3 and 7 after SE. We assessed several features from cardiac interbeat intervals, including linear, non-linear and frequency parameters of interbeat intervals, and power spectra of interpolated intervals during epileptogenesis. After thresholding, the altered values were applied to a non-linear classifier. The non-linear classifier divided animals into two groups; with and without epilepsy, based on all collected data.

RESULTS

We found that none of the single altered parameters in cardiac activity emerged as a sole biomarker for epileptogenesis. However, the non-linear classifier distinguished animals that later developed from those and did not develop epilepsy. The non-linear classification was performed on preliminary findings from 23 animals; six did not develop epilepsy and the rest did. The average positive predictive value (precision rate) was 78%. This was calculated based on the average sensitivity and specificity, which were 80.6% and 35.2% respectively, for the 100 classification passes. We also showed that these numbers would have increased as the number of subjects increased.

CONCLUSION

Changes to the brain caused by status epilepticus that lead to epileptogenesis have systemic effects, and alter cardiac activity. A non-linear classifier performed on several extracted features of cardiac interbeat intervals may be useful as a biomarker to identify animals with low and high probability of developing epilepsy after status epilepticus.

摘要

目的

基于心动间隔特征来确定癫痫发生的生物标志物。

方法

在腹腔注射匹罗卡品(PILO)诱导癫痫持续状态(SE)之前,从自由活动的大鼠(n = 23)中记录心电图(ECG)和脑电图(EEG)信号作为基线,并在 SE 后第 1、3 和 7 天记录。我们评估了心动间隔中的几个特征,包括心动间隔的线性、非线性和频率参数,以及癫痫发生过程中插值间隔的功率谱。经过阈值处理后,将改变的值应用于非线性分类器。非线性分类器根据所有收集的数据将动物分为有癫痫和无癫痫两组。

结果

我们发现,心脏活动中没有一个单一的改变参数可以作为癫痫发生的唯一生物标志物。然而,非线性分类器可以区分后来发生癫痫和不发生癫痫的动物。非线性分类是在 23 只动物的初步发现上进行的;其中 6 只动物未发生癫痫,其余的发生了癫痫。平均阳性预测值(精度率)为 78%。这是基于平均敏感性和特异性计算得出的,敏感性和特异性分别为 80.6%和 35.2%,在 100 次分类通过中。我们还表明,随着研究对象数量的增加,这些数字将会增加。

结论

SE 引起的大脑变化导致癫痫发生,具有系统性影响,并改变心脏活动。在心动间隔的几个提取特征上执行非线性分类器可能是一种有用的生物标志物,可用于识别 SE 后发生癫痫的低概率和高概率动物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/621e/3361514/a99ac225aa8b/nihms-356660-f0001.jpg

相似文献

5
A Brain-Heart Biomarker for Epileptogenesis.脑-心生物标志物与癫痫发生。
J Neurosci. 2018 Sep 26;38(39):8473-8483. doi: 10.1523/JNEUROSCI.1130-18.2018. Epub 2018 Aug 27.
10
[Analysis of cardiac parameters in animals with epilepsy: possible cause of sudden death?].
Arq Neuropsiquiatr. 2005 Dec;63(4):1035-41. doi: 10.1590/s0004-282x2005000600023. Epub 2005 Dec 15.

本文引用的文献

2
Cardiac changes in epilepsy.癫痫中的心脏改变。
Seizure. 2010 Oct;19(8):455-60. doi: 10.1016/j.seizure.2010.07.008. Epub 2010 Aug 4.
5
Newborn seizure detection based on heart rate variability.基于心率变异性的新生儿惊厥检测。
IEEE Trans Biomed Eng. 2009 Nov;56(11):2594-603. doi: 10.1109/TBME.2009.2026908. Epub 2009 Jul 21.
8
Prognostic factors in patients with mesial temporal lobe epilepsy.内侧颞叶癫痫患者的预后因素
Epilepsia. 2009 Jan;50 Suppl 1:41-4. doi: 10.1111/j.1528-1167.2008.01969.x.
9
High-frequency oscillations: what is normal and what is not?高频振荡:何为正常,何为异常?
Epilepsia. 2009 Apr;50(4):598-604. doi: 10.1111/j.1528-1167.2008.01917.x. Epub 2008 Dec 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验