Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20852, USA.
J Mol Biol. 2012 Mar 16;417(1-2):95-111. doi: 10.1016/j.jmb.2012.01.023. Epub 2012 Jan 27.
Membrane lipids have been implicated to influence the activity of G-protein-coupled receptors (GPCRs). Almost all of our knowledge on the role of lipids on GPCR and G protein function comes from work on the visual pigment rhodopsin and its G protein transducin, which reside in a highly specialized membrane environment. Thus, insight gained from rhodopsin signaling may not be simply translated to other nonvisual GPCRs. Here, we investigated the effect of lipid head group charges on the signal transduction properties of the class A GPCR neurotensin (NT) receptor 1 (NTS1) under defined experimental conditions, using self-assembled phospholipid nanodiscs prepared with the zwitter-ionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), the negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), or a POPC/POPG mixture. A combination of dynamic light scattering and sedimentation velocity showed that NTS1 was monomeric in POPC-, POPC/POPG-, and POPG-nanodiscs. Binding of the agonist NT to NTS1 occurred with similar affinities and was essentially unaffected by the phospholipid composition. In contrast, Gq protein coupling to NTS1 in various lipid nanodiscs was significantly different, and the apparent affinity of Gαq and Gβ(1)γ(1) to activated NTS1 increased with increasing POPG content. NTS1-catalyzed GDP/GTPγS nucleotide exchange at Gαq in the presence of Gβ(1)γ(1) and NT was crucially affected by the lipid type, with exchange rates higher by 1 or 2 orders of magnitude in POPC/POPG- and POPG-nanodiscs, respectively, compared to POPC-nanodiscs. Our data demonstrate that negatively charged lipids in the immediate vicinity of a nonvisual GPCR modulate the G-protein-coupling step.
膜脂被认为会影响 G 蛋白偶联受体(GPCR)的活性。我们对脂质在 GPCR 和 G 蛋白功能中的作用的几乎所有了解都来自于视觉色素视紫红质及其 G 蛋白转导蛋白的研究,它们存在于高度专门化的膜环境中。因此,从视紫红质信号获得的见解可能无法简单地转化为其他非视觉 GPCR。在这里,我们在明确的实验条件下,使用带负电荷的 1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)、1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸-(1'-rac-甘油)(POPG)或 POPC/POPG 混合物制备的自组装磷脂纳米盘研究了脂质头部基团电荷对 A 类 GPCR 神经降压素(NT)受体 1(NTS1)信号转导特性的影响。动态光散射和沉降速度的组合表明,NTS1 在 POPC、POPC/POPG 和 POPG 纳米盘中均为单体。激动剂 NT 与 NTS1 的结合具有相似的亲和力,并且基本上不受磷脂组成的影响。相比之下,NTS1 与各种脂质纳米盘中的 Gq 蛋白偶联差异显著,与激活的 NTS1 结合的 Gαq 和 Gβ(1)γ(1)的表观亲和力随着 POPG 含量的增加而增加。在存在 Gβ(1)γ(1)和 NT 的情况下,NTS1 催化 Gαq 上的 GDP/GTPγS 核苷酸交换受到脂质类型的严重影响,与 POPC 纳米盘中的交换速率相比,在 POPC/POPG 和 POPG 纳米盘中分别提高了 1 或 2 个数量级。我们的数据表明,非视觉 GPCR 附近的带负电荷的脂质调节 G 蛋白偶联步骤。