Suppr超能文献

建立秘鲁健康儿童正常肺音的参考标准。

Developing a reference of normal lung sounds in healthy Peruvian children.

作者信息

Ellington Laura E, Emmanouilidou Dimitra, Elhilali Mounya, Gilman Robert H, Tielsch James M, Chavez Miguel A, Marin-Concha Julio, Figueroa Dante, West James, Checkley William

机构信息

Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, 1800 Orleans Ave, Suite 9121, Baltimore, MD, 21205, USA.

出版信息

Lung. 2014 Oct;192(5):765-73. doi: 10.1007/s00408-014-9608-3. Epub 2014 Jun 19.

Abstract

PURPOSE

Lung auscultation has long been a standard of care for the diagnosis of respiratory diseases. Recent advances in electronic auscultation and signal processing have yet to find clinical acceptance; however, computerized lung sound analysis may be ideal for pediatric populations in settings, where skilled healthcare providers are commonly unavailable. We described features of normal lung sounds in young children using a novel signal processing approach to lay a foundation for identifying pathologic respiratory sounds.

METHODS

186 healthy children with normal pulmonary exams and without respiratory complaints were enrolled at a tertiary care hospital in Lima, Peru. Lung sounds were recorded at eight thoracic sites using a digital stethoscope. 151 (81%) of the recordings were eligible for further analysis. Heavy-crying segments were automatically rejected and features extracted from spectral and temporal signal representations contributed to profiling of lung sounds.

RESULTS

Mean age, height, and weight among study participants were 2.2 years (SD 1.4), 84.7 cm (SD 13.2), and 12.0 kg (SD 3.6), respectively; and, 47% were boys. We identified ten distinct spectral and spectro-temporal signal parameters and most demonstrated linear relationships with age, height, and weight, while no differences with genders were noted. Older children had a faster decaying spectrum than younger ones. Features like spectral peak width, lower-frequency Mel-frequency cepstral coefficients, and spectro-temporal modulations also showed variations with recording site.

CONCLUSIONS

Lung sound extracted features varied significantly with child characteristics and lung site. A comparison with adult studies revealed differences in the extracted features for children. While sound-reduction techniques will improve analysis, we offer a novel, reproducible tool for sound analysis in real-world environments.

摘要

目的

长期以来,肺部听诊一直是诊断呼吸系统疾病的标准医疗手段。电子听诊和信号处理方面的最新进展尚未得到临床认可;然而,计算机化肺音分析对于那些通常缺乏专业医疗服务提供者的儿科环境可能是理想的选择。我们使用一种新颖的信号处理方法描述了幼儿正常肺音的特征,为识别病理性呼吸音奠定基础。

方法

在秘鲁利马的一家三级医疗中心招募了186名肺部检查正常且无呼吸道症状的健康儿童。使用数字听诊器在八个胸部部位记录肺音。其中151份(81%)记录符合进一步分析的条件。自动剔除大哭片段,并从频谱和时间信号表示中提取特征,以用于肺音分析。

结果

研究参与者的平均年龄、身高和体重分别为2.2岁(标准差1.4)、84.7厘米(标准差13.2)和12.0千克(标准差3.6);47%为男孩。我们确定了十个不同的频谱和频谱 - 时间信号参数,大多数参数与年龄、身高和体重呈线性关系,未发现性别差异。年龄较大的儿童频谱衰减速度比年龄较小的儿童快。频谱峰值宽度、低频梅尔频率倒谱系数和频谱 - 时间调制等特征也因记录部位而异。

结论

提取的肺音特征因儿童特征和肺部部位而异。与成人研究的比较揭示了儿童提取特征的差异。虽然降噪技术将改善分析,但我们提供了一种新颖、可重复的工具,用于实际环境中的声音分析。

相似文献

4
Characterization of noise contaminations in lung sound recordings.肺部声音记录中噪声污染的特征描述。
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2551-4. doi: 10.1109/EMBC.2013.6610060.

引用本文的文献

4
Assessment of breath sounds at birth using digital stethoscope technology.使用数字听诊器技术评估出生时的呼吸音。
Eur J Pediatr. 2020 May;179(5):781-789. doi: 10.1007/s00431-019-03565-8. Epub 2020 Jan 6.

本文引用的文献

1
Characterization of noise contaminations in lung sound recordings.肺部声音记录中噪声污染的特征描述。
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2551-4. doi: 10.1109/EMBC.2013.6610060.
4
Analysis of respiratory sounds: state of the art.呼吸音分析:现状
Clin Med Circ Respirat Pulm Med. 2008 May 16;2:45-58. doi: 10.4137/ccrpm.s530.
6
Method for automatic detection of wheezing in lung sounds.肺部声音中哮鸣音的自动检测方法。
Braz J Med Biol Res. 2009 Jul;42(7):674-84. doi: 10.1590/s0100-879x2009000700013.
9
Classifying respiratory sounds with different feature sets.使用不同特征集对呼吸音进行分类。
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2856-9. doi: 10.1109/IEMBS.2006.259946.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验