Suppr超能文献

心脏瓣膜间质细胞的钙化结节形态发生与应变有关。

Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent.

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232-0493, USA.

出版信息

Biomech Model Mechanobiol. 2013 Jan;12(1):5-17. doi: 10.1007/s10237-012-0377-8. Epub 2012 Feb 4.

Abstract

Calcific aortic valve disease (CAVD) results in impaired function through the inability of valves to fully open and close, but the causes of this pathology are unknown. Stiffening of the aorta is associated with CAVD and results in exposing the aortic valves to greater mechanical strain. Transforming growth factor β1 (TGF-β1) is enriched in diseased valves and has been shown to combine with strain to synergistically alter aortic valve interstitial cell (AVIC) phenotypes. Therefore, we investigated the role of strain and TGF-β1 on the calcification of AVICs. Following TGF-β1 pretreatment, strain induced intact monolayers to aggregate and calcify. Using a wound assay, we confirmed that TGF-β1 increases tension in the monolayer in parallel with α-smooth muscle actin (αSMA) expression. Continual exposure to strain accelerates aggregates to calcify into mature nodules that contain a necrotic core surrounded by an apoptotic ring. This phenotype appears to be mediated by strain inhibition of AVIC migration after the initial formation of aggregates. To better interpret the extent to which externally applied strain physically impacts this process, we modified the classical Lamé solution, derived using principles from linear elasticity, to reveal strain magnification as a novel feature occurring in a mechanical environment that supports nodule formation. These results indicate that strain can impact multiple points of nodule formation: by modifying tension in the monolayer, remodeling cell contacts, migration, apoptosis, and mineralization. Therefore, strain-induced nodule formation provides new directions for developing strategies to address CAVD.

摘要

钙化性主动脉瓣疾病 (CAVD) 导致瓣膜无法完全打开和关闭,从而影响瓣膜功能,但这种病理学的原因尚不清楚。主动脉僵硬与 CAVD 相关,导致主动脉瓣承受更大的机械应变。转化生长因子 β1 (TGF-β1) 在病变瓣膜中丰富,并已显示与应变协同作用,改变主动脉瓣间质细胞 (AVIC) 表型。因此,我们研究了应变和 TGF-β1 对 AVIC 钙化的作用。在 TGF-β1 预处理后,应变诱导完整的单层细胞聚集和钙化。通过划痕实验,我们证实 TGF-β1 与 α-平滑肌肌动蛋白 (αSMA) 表达平行增加单层细胞的张力。持续暴露于应变会加速聚集物钙化形成成熟的结节,其中包含坏死核心和凋亡环。这种表型似乎是由应变抑制聚集物形成后的 AVIC 迁移介导的。为了更好地解释外部施加的应变在多大程度上对这一过程产生物理影响,我们修改了经典的拉梅方程,该方程使用线性弹性原理推导得出,以揭示应变放大作为支持结节形成的机械环境中的一个新特征。这些结果表明,应变可以影响结节形成的多个点:通过改变单层细胞的张力、重塑细胞接触、迁移、凋亡和矿化。因此,应变诱导的结节形成为开发解决 CAVD 的策略提供了新的方向。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验