Suppr超能文献

[附子多靶点预测及其网络药理学]

[Prediction of multi-target of Aconiti Lateralis Radix Praeparata and its network pharmacology].

作者信息

Wu Leihong, Gao Xiumei, Wang Linli, Liu Qian, Fan Xiaohui, Wang Yi, Cheng Yiyu

机构信息

Department of Chinese Medicine Science & Engineering, Zhejiang University, Hangzhou 310058, China.

出版信息

Zhongguo Zhong Yao Za Zhi. 2011 Nov;36(21):2907-10.

Abstract

OBJECTIVE

To predict multi-targets by multi-compounds found in Aconiti Lateralis Radix Praeparata and construct the corresponding multi-compound-multi-target network.

METHOD

Based on drug-target relationships of FDA approved drugs, a model for predicting targets was established by random forest algorithm. This model was then applied to predict the targets of Aconiti Lateralis Radix Praeparata and construct the multi-compound-multi-target network.

RESULT

The predicted targets of 22 compounds of Aconiti Lateralis Radix Praeparata are validated by literature. Each compound in the established network was correlated with 16. 3 targets on average, while each target was correlated with 4. 77 compounds on average, which reflects the "multi-compound and multi-target" characteristic of Chinese medicine.

CONCLUSION

The proposed approach can be used to find potential targets of Chinese medicine.

摘要

目的

预测制附子中多种化合物的多靶点,并构建相应的多化合物-多靶点网络。

方法

基于美国食品药品监督管理局(FDA)批准药物的药物-靶点关系,采用随机森林算法建立靶点预测模型。然后将该模型应用于预测制附子的靶点并构建多化合物-多靶点网络。

结果

制附子22种化合物的预测靶点经文献验证。所建立网络中的每种化合物平均与16.3个靶点相关,而每个靶点平均与4.77种化合物相关,这体现了中药“多成分、多靶点”的特点。

结论

所提出的方法可用于发现中药的潜在靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验