Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
Am J Respir Crit Care Med. 2012 Apr 15;185(8):851-61. doi: 10.1164/rccm.201106-1152OC. Epub 2012 Feb 3.
Mitochondrial damage is an important component of multiple organ failure syndrome, a highly lethal complication of severe sepsis that lacks specific therapy. Mitochondrial quality control is regulated in part by the heme oxygenase-1 (HO-1; Hmox1) system through the redox-regulated NF-E2-related factor-2 (Nrf2) transcription factor, but its role in mitochondrial biogenesis in Staphylococcus aureus sepsis is unknown.
To test the hypothesis that Nrf2-dependent up-regulation of the HO-1/carbon monoxide (CO) system would preserve mitochondrial biogenesis and rescue mice from lethal S. aureus sepsis.
A controlled murine S. aureus peritonitis model with and without inhaled CO was examined for HO-1 and Nrf2 regulation of mitochondrial biogenesis and the resolution of hepatic mitochondrial damage.
Sepsis survival was significantly enhanced using inhaled CO (250 ppm once-daily for 1 h), and linked mechanistically to Hmox1 induction and mitochondrial HO activity through Nrf2 transcriptional and Akt kinase activity. HO-1/CO stimulated Nrf2-dependent gene expression and nuclear accumulation of nuclear respiratory factor-1, -2α (Gabpa), and peroxisome proliferator-activated receptor gamma coactivator-1α; increased mitochondrial transcription factor-A and citrate synthase protein levels; and augmented mtDNA copy number. CO enhanced antiinflammatory IL-10 and reduced proinflammatory tumor necrosis factor-α production. By contrast, Nrf2(-/-) and Akt1(-/-) mice lacked CO induction of Hmox1 and mitochondrial biogenesis, and CO rescued neither strain from S. aureus sepsis.
We identify an inducible Nrf2/HO-1 regulatory cycle for mitochondrial biogenesis that is prosurvival and counter-inflammatory in sepsis, and describe targeted induction of mitochondrial biogenesis as a potential multiple organ failure therapy.
线粒体损伤是多器官衰竭综合征(一种严重脓毒症的高度致命并发症,缺乏特异性治疗方法)的重要组成部分。线粒体质量控制部分受血红素加氧酶-1(HO-1;Hmox1)系统通过氧化还原调节的核因子-E2 相关因子-2(Nrf2)转录因子调节,但在金黄色葡萄球菌脓毒症中线粒体生物发生中的作用尚不清楚。
检验 Nrf2 依赖性 HO-1/一氧化碳(CO)系统上调可维持线粒体生物发生并使小鼠免于致命性金黄色葡萄球菌脓毒症的假说。
用和不用吸入 CO 的控制型小鼠金黄色葡萄球菌腹膜炎模型,检查 HO-1 和 Nrf2 对线粒体生物发生的调节作用以及肝线粒体损伤的恢复情况。
吸入 CO(每天 1 次,250 ppm,持续 1 小时)显著提高了脓毒症的存活率,并通过 HO-1 诱导和 Nrf2 转录和 Akt 激酶活性与线粒体 HO 活性的关系在机制上与 Hmox1 诱导和线粒体 HO 活性相关联。HO-1/CO 刺激 Nrf2 依赖性基因表达和核呼吸因子-1、-2α(Gabpa)和过氧化物酶体增殖物激活受体 γ共激活因子-1α的核积累;增加线粒体转录因子-A 和柠檬酸合酶蛋白水平;并增加 mtDNA 拷贝数。CO 增强抗炎性白细胞介素-10 并减少促炎性肿瘤坏死因子-α的产生。相比之下,Nrf2(-/-)和 Akt1(-/-)小鼠缺乏 CO 诱导的 Hmox1 和线粒体生物发生,CO 也未能挽救这两种菌株免受金黄色葡萄球菌脓毒症的影响。
我们发现了一种诱导性 Nrf2/HO-1 调节周期,用于线粒体生物发生,在脓毒症中具有生存和抗炎作用,并描述了靶向诱导线粒体生物发生作为一种潜在的多器官衰竭治疗方法。