Tian Chunna, Fan Guoliang, Gao Xinbo, Tian Qi
Video and Image Processing System Laboratory, School of Electronic Engineering, Xidian University, Xi'an 710071, China.
IEEE Trans Syst Man Cybern B Cybern. 2012 Apr;42(2):320-33. doi: 10.1109/TSMCB.2011.2169452. Epub 2012 Feb 3.
Face images under uncontrolled environments suffer from the changes of multiple factors such as camera view, illumination, expression, etc. Tensor analysis provides a way of analyzing the influence of different factors on facial variation. However, the TensorFace model creates a difficulty in representing the nonlinearity of view subspace. In this paper, to break this limitation, we present a view-manifold-based TensorFace (V-TensorFace), in which the latent view manifold preserves the local distances in the multiview face space. Moreover, a kernelized TensorFace (K-TensorFace) for multiview face recognition is proposed to preserve the structure of the latent manifold in the image space. Both methods provide a generative model that involves a continuous view manifold for unseen view representation. Most importantly, we propose a unified framework to generalize TensorFace, V-TensorFace, and K-TensorFace. Finally, an expectation-maximization like algorithm is developed to estimate the identity and view parameters iteratively for a face image of an unknown/unseen view. The experiment on the PIE database shows the effectiveness of the manifold construction method. Extensive comparison experiments on Weizmann and Oriental Face databases for multiview face recognition demonstrate the superiority of the proposed V- and K-TensorFace methods over the view-based principal component analysis and other state-of-the-art approaches for such purpose.
在非受控环境下的面部图像会受到诸如相机视角、光照、表情等多种因素变化的影响。张量分析提供了一种分析不同因素对面部变化影响的方法。然而,张量脸模型在表示视角子空间的非线性方面存在困难。在本文中,为了突破这一限制,我们提出了一种基于视角流形的张量脸(V - 张量脸),其中潜在视角流形保留了多视角人脸空间中的局部距离。此外,还提出了一种用于多视角人脸识别的核化张量脸(K - 张量脸),以保留图像空间中潜在流形的结构。这两种方法都提供了一个生成模型,该模型涉及用于未见视角表示的连续视角流形。最重要的是,我们提出了一个统一的框架来推广张量脸、V - 张量脸和K - 张量脸。最后,开发了一种类似期望最大化的算法,用于对未知/未见视角的人脸图像迭代估计身份和视角参数。在PIE数据库上的实验表明了流形构建方法的有效性。在Weizmann和东方人脸数据库上进行的多视角人脸识别的广泛比较实验证明了所提出的V - 张量脸和K - 张量脸方法相对于基于视角的主成分分析和其他用于此目的的最新方法的优越性。