Suppr超能文献

可变前体mRNA剪接的共转录调控

Co-transcriptional regulation of alternative pre-mRNA splicing.

作者信息

Shukla Sanjeev, Oberdoerffer Shalini

机构信息

Mouse Cancer Genetics Program, NCI- Frederick, NIH, Frederick, MD 21702, USA.

出版信息

Biochim Biophys Acta. 2012 Jul;1819(7):673-83. doi: 10.1016/j.bbagrm.2012.01.014. Epub 2012 Feb 2.

Abstract

While studies of alternative pre-mRNA splicing regulation have typically focused on RNA-binding proteins and their target sequences within nascent message, it is becoming increasingly evident that mRNA splicing, RNA polymerase II (pol II) elongation and chromatin structure are intricately intertwined. The majority of introns in higher eukaryotes are excised prior to transcript release in a manner that is dependent on transcription through pol II. As a result of co-transcriptional splicing, variations in pol II elongation influence alternative splicing patterns, wherein a slower elongation rate is associated with increased inclusion of alternative exons within mature mRNA. Physiological barriers to pol II elongation, such as repressive chromatin structure, can thereby similarly impact splicing decisions. Surprisingly, pre-mRNA splicing can reciprocally influence pol II elongation and chromatin structure. Here, we highlight recent advances in co-transcriptional splicing that reveal an extensive network of coupling between splicing, transcription and chromatin remodeling complexes. This article is part of a Special Issue entitled: Chromatin in time and space.

摘要

虽然对可变前体mRNA剪接调控的研究通常集中于RNA结合蛋白及其在新生信使中的靶序列,但越来越明显的是,mRNA剪接、RNA聚合酶II(pol II)延伸和染色质结构是错综复杂地交织在一起的。高等真核生物中的大多数内含子在转录本释放之前以依赖于通过pol II转录的方式被切除。由于共转录剪接,pol II延伸的变化会影响可变剪接模式,其中较慢的延伸速率与成熟mRNA中可变外显子的包含增加有关。因此,pol II延伸的生理障碍,如抑制性染色质结构,同样会影响剪接决定。令人惊讶的是,前体mRNA剪接可以相互影响pol II延伸和染色质结构。在这里,我们重点介绍了共转录剪接的最新进展,这些进展揭示了剪接、转录和染色质重塑复合体之间广泛的耦合网络。本文是名为:《时空染色质》的特刊的一部分。

相似文献

1
Co-transcriptional regulation of alternative pre-mRNA splicing.
Biochim Biophys Acta. 2012 Jul;1819(7):673-83. doi: 10.1016/j.bbagrm.2012.01.014. Epub 2012 Feb 2.
3
On the importance of being co-transcriptional.
J Cell Sci. 2002 Oct 15;115(Pt 20):3865-71. doi: 10.1242/jcs.00073.
4
The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing.
PLoS Biol. 2011 Jan 11;9(1):e1000573. doi: 10.1371/journal.pbio.1000573.
5
Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing.
J Mol Biol. 2016 Jun 19;428(12):2623-2635. doi: 10.1016/j.jmb.2016.04.017. Epub 2016 Apr 20.
6
Coupling between transcription and alternative splicing.
Cancer Treat Res. 2013;158:1-24. doi: 10.1007/978-3-642-31659-3_1.
7
Design principles of interconnections between chromatin and pre-mRNA splicing.
Trends Biochem Sci. 2012 Jun;37(6):248-53. doi: 10.1016/j.tibs.2012.02.002. Epub 2012 Mar 5.
8
Transcriptional elongation and alternative splicing.
Biochim Biophys Acta. 2013 Jan;1829(1):134-40. doi: 10.1016/j.bbagrm.2012.08.005. Epub 2012 Sep 7.
9
Control of alternative pre-mRNA splicing by RNA Pol II elongation: faster is not always better.
IUBMB Life. 2003 Apr-May;55(4-5):235-41. doi: 10.1080/1521654031000119830.
10
Multiple links between transcription and splicing.
RNA. 2004 Oct;10(10):1489-98. doi: 10.1261/rna.7100104.

引用本文的文献

3
How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors.
Cancers (Basel). 2023 May 26;15(11):2918. doi: 10.3390/cancers15112918.
4
The rice blast fungus SR protein 1 regulates alternative splicing with unique mechanisms.
PLoS Pathog. 2022 Dec 8;18(12):e1011036. doi: 10.1371/journal.ppat.1011036. eCollection 2022 Dec.
5
Alternative splicing modulation by G-quadruplexes.
Nat Commun. 2022 May 3;13(1):2404. doi: 10.1038/s41467-022-30071-7.
6
The SWI/SNF subunit BRG1 affects alternative splicing by changing RNA binding factor interactions with nascent RNA.
Mol Genet Genomics. 2022 Mar;297(2):463-484. doi: 10.1007/s00438-022-01863-9. Epub 2022 Feb 20.
8
Alternative Splicing of Pre-mRNA in the Control of Immune Activity.
Genes (Basel). 2021 Apr 15;12(4):574. doi: 10.3390/genes12040574.
10
The multifaceted role of PARP1 in RNA biogenesis.
Wiley Interdiscip Rev RNA. 2021 Mar;12(2):e1617. doi: 10.1002/wrna.1617. Epub 2020 Jul 12.

本文引用的文献

1
The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes.
Nat Struct Mol Biol. 2011 Nov 13;18(12):1394-9. doi: 10.1038/nsmb.2164.
2
Fast transcription rates of RNA polymerase II in human cells.
EMBO Rep. 2011 Dec 1;12(12):1280-5. doi: 10.1038/embor.2011.196.
3
CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing.
Nature. 2011 Nov 3;479(7371):74-9. doi: 10.1038/nature10442.
4
Evolution of SR protein and hnRNP splicing regulatory factors.
Wiley Interdiscip Rev RNA. 2012 Jan-Feb;3(1):1-12. doi: 10.1002/wrna.100. Epub 2011 Sep 2.
5
Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner.
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):E627-35. doi: 10.1073/pnas.1103344108. Epub 2011 Aug 1.
6
Pre-mRNA splicing is a determinant of histone H3K36 methylation.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13564-9. doi: 10.1073/pnas.1109475108. Epub 2011 Aug 1.
7
Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36.
Nat Struct Mol Biol. 2011 Jul 26;18(9):977-83. doi: 10.1038/nsmb.2123.
9
Keeping mRNPs in check during assembly and nuclear export.
Nat Rev Mol Cell Biol. 2011 Jun;12(6):377-84. doi: 10.1038/nrm3119.
10
Pre-mRNA splicing: where and when in the nucleus.
Trends Cell Biol. 2011 Jun;21(6):336-43. doi: 10.1016/j.tcb.2011.03.003. Epub 2011 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验