Suppr超能文献

3D堆叠和技术缩放对立体匹配处理器功耗及面积的影响

The Impact of 3D Stacking and Technology Scaling on the Power and Area of Stereo Matching Processors.

作者信息

Ok Seung-Ho, Lee Yong-Hwan, Shim Jae Hoon, Lim Sung Kyu, Moon Byungin

机构信息

Samsung Electronics, Hwaseong-si, Gyeonggi-do 18448, Korea.

School of Electronic Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea.

出版信息

Sensors (Basel). 2017 Feb 22;17(2):426. doi: 10.3390/s17020426.

Abstract

Recently, stereo matching processors have been adopted in real-time embedded systems such as intelligent robots and autonomous vehicles, which require minimal hardware resources and low power consumption. Meanwhile, thanks to the through-silicon via (TSV), three-dimensional (3D) stacking technology has emerged as a practical solution to achieving the desired requirements of a high-performance circuit. In this paper, we present the benefits of 3D stacking and process technology scaling on stereo matching processors. We implemented 2-tier 3D-stacked stereo matching processors with GlobalFoundries 130-nm and Nangate 45-nm process design kits and compare them with their two-dimensional (2D) counterparts to identify comprehensive design benefits. In addition, we examine the findings from various analyses to identify the power benefits of 3D-stacked integrated circuit (IC) and device technology advancements. From experiments, we observe that the proposed 3D-stacked ICs, compared to their 2D IC counterparts, obtain 43% area, 13% power, and 14% wire length reductions. In addition, we present a logic partitioning method suitable for a pipeline-based hardware architecture that minimizes the use of TSVs.

摘要

最近,立体匹配处理器已被应用于智能机器人和自动驾驶车辆等实时嵌入式系统中,这些系统需要最少的硬件资源和低功耗。与此同时,得益于硅通孔(TSV)技术,三维(3D)堆叠技术已成为实现高性能电路所需要求的一种切实可行的解决方案。在本文中,我们展示了3D堆叠和工艺技术缩放对立体匹配处理器的好处。我们使用GlobalFoundries 130纳米和Nangate 45纳米工艺设计套件实现了两层3D堆叠立体匹配处理器,并将它们与其二维(2D)对应物进行比较,以确定全面的设计优势。此外,我们研究了各种分析的结果,以确定3D堆叠集成电路(IC)和器件技术进步带来的功耗优势。通过实验,我们观察到,与2D IC对应物相比,所提出的3D堆叠IC在面积、功耗和线长方面分别减少了43%、13%和14%。此外,我们还提出了一种适用于基于流水线的硬件架构的逻辑分区方法,该方法可最大限度地减少TSV的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e152/5336097/b45bb13521ab/sensors-17-00426-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验