Suppr超能文献

钙调节钠通道的晶体基础。

Crystallographic basis for calcium regulation of sodium channels.

机构信息

Department of Anesthesiology, Pharmacology and Therapeutics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3.

出版信息

Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3558-63. doi: 10.1073/pnas.1114748109. Epub 2012 Feb 13.

Abstract

Voltage-gated sodium channels underlie the rapid regenerative upstroke of action potentials and are modulated by cytoplasmic calcium ions through a poorly understood mechanism. We describe the 1.35 Å crystal structure of Ca(2+)-bound calmodulin (Ca(2+)/CaM) in complex with the inactivation gate (DIII-IV linker) of the cardiac sodium channel (Na(V)1.5). The complex harbors the positions of five disease mutations involved with long Q-T type 3 and Brugada syndromes. In conjunction with isothermal titration calorimetry, we identify unique inactivation-gate mutations that enhance or diminish Ca(2+)/CaM binding, which, in turn, sensitize or abolish Ca(2+) regulation of full-length channels in electrophysiological experiments. Additional biochemical experiments support a model whereby a single Ca(2+)/CaM bridges the C-terminal IQ motif to the DIII-IV linker via individual N and C lobes, respectively. The data suggest that Ca(2+)/CaM destabilizes binding of the inactivation gate to its receptor, thus biasing inactivation toward more depolarized potentials.

摘要

电压门控钠离子通道是动作电位快速再生上升的基础,其活性通过一种尚未完全阐明的机制受到细胞质钙离子的调节。我们描述了钙结合钙调蛋白(Ca2+/CaM)与心脏钠离子通道(NaV1.5)失活门(DIII-IV 连接子)复合物的 1.35Å 晶体结构。该复合物包含五个与长 QT 型 3 型和 Brugada 综合征相关疾病突变的位置。结合等温滴定量热法,我们确定了独特的失活门突变,这些突变增强或减弱了 Ca2+/CaM 的结合,进而在电生理实验中使全长通道对 Ca2+的调节变得敏感或消除。其他生化实验支持这样一种模型,即单个 Ca2+/CaM 通过各自的 N 和 C 结构域分别将 C 端 IQ 基序与 DIII-IV 连接子桥接。这些数据表明,Ca2+/CaM 会破坏失活门与其受体的结合,从而使失活门更偏向于去极化电位。

相似文献

1
Crystallographic basis for calcium regulation of sodium channels.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3558-63. doi: 10.1073/pnas.1114748109. Epub 2012 Feb 13.
3
Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin.
J Biol Chem. 2009 Mar 27;284(13):8846-54. doi: 10.1074/jbc.M806871200. Epub 2009 Jan 26.
4
Solution NMR structure of Apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5.
J Mol Biol. 2011 Feb 11;406(1):106-19. doi: 10.1016/j.jmb.2010.11.046. Epub 2010 Dec 15.
5
Elementary mechanisms of calmodulin regulation of Na1.5 producing divergent arrhythmogenic phenotypes.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2025085118.
6
Calmodulin mediates Ca2+ sensitivity of sodium channels.
J Biol Chem. 2004 Oct 22;279(43):45004-12. doi: 10.1074/jbc.M407286200. Epub 2004 Aug 16.
7
8
Crystal structures of Ca-calmodulin bound to Na C-terminal regions suggest role for EF-hand domain in binding and inactivation.
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10763-10772. doi: 10.1073/pnas.1818618116. Epub 2019 May 9.
9
Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin.
J Physiol. 2005 Jun 1;565(Pt 2):349-70. doi: 10.1113/jphysiol.2004.081422. Epub 2005 Mar 3.

引用本文的文献

1
A robust expression system reveals distinct gating mechanisms and calmodulin regulation of Na1.9 channels.
Sci Adv. 2025 May 30;11(22):eadt9799. doi: 10.1126/sciadv.adt9799. Epub 2025 May 28.
3
An integrative approach to protein sequence design through multiobjective optimization.
PLoS Comput Biol. 2024 Jul 11;20(7):e1011953. doi: 10.1371/journal.pcbi.1011953. eCollection 2024 Jul.
5
BIOLOGICAL ANTIARRHYTHMICS-SODIUM CHANNEL INTERACTING PROTEINS.
Trans Am Clin Climatol Assoc. 2023;133:136-148.
6
High calcium concentrations reduce cellular excitability of mouse MNTB neurons.
Brain Res. 2023 Dec 1;1820:148568. doi: 10.1016/j.brainres.2023.148568. Epub 2023 Sep 7.
7
Calmodulin mutations affecting Gly114 impair binding to the Na1.5 IQ-domain.
Front Pharmacol. 2023 Aug 16;14:1210140. doi: 10.3389/fphar.2023.1210140. eCollection 2023.
8
Feedback contributions to excitation-contraction coupling in native functioning striated muscle.
Philos Trans R Soc Lond B Biol Sci. 2023 Jun 19;378(1879):20220162. doi: 10.1098/rstb.2022.0162. Epub 2023 May 1.
10
Machine learning in computational modelling of membrane protein sequences and structures: From methodologies to applications.
Comput Struct Biotechnol J. 2023 Jan 28;21:1205-1226. doi: 10.1016/j.csbj.2023.01.036. eCollection 2023.

本文引用的文献

1
The crystal structure of a voltage-gated sodium channel.
Nature. 2011 Jul 10;475(7356):353-8. doi: 10.1038/nature10238.
3
Solution NMR structure of Apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5.
J Mol Biol. 2011 Feb 11;406(1):106-19. doi: 10.1016/j.jmb.2010.11.046. Epub 2010 Dec 15.
4
Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization.
EMBO J. 2010 Dec 1;29(23):3924-38. doi: 10.1038/emboj.2010.260. Epub 2010 Oct 15.
6
Sodium channel mutations and arrhythmias.
Nat Rev Cardiol. 2009 May;6(5):337-48. doi: 10.1038/nrcardio.2009.44.
7
Calcium-mediated dual-mode regulation of cardiac sodium channel gating.
Circ Res. 2009 Apr 10;104(7):870-8. doi: 10.1161/CIRCRESAHA.108.193565. Epub 2009 Mar 5.
8
Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin.
J Biol Chem. 2009 Mar 27;284(13):8846-54. doi: 10.1074/jbc.M806871200. Epub 2009 Jan 26.
9
Solution structure of the NaV1.2 C-terminal EF-hand domain.
J Biol Chem. 2009 Mar 6;284(10):6446-54. doi: 10.1074/jbc.M807401200. Epub 2009 Jan 7.
10
Solution NMR structure of the C-terminal EF-hand domain of human cardiac sodium channel NaV1.5.
J Biol Chem. 2009 Mar 6;284(10):6436-45. doi: 10.1074/jbc.M807747200. Epub 2008 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验