Suppr超能文献

基于模型的多壳弥散磁共振数据的分析用于束流追踪:如何克服过拟合问题。

Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems.

机构信息

Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom.

出版信息

Magn Reson Med. 2012 Dec;68(6):1846-55. doi: 10.1002/mrm.24204. Epub 2012 Feb 14.

Abstract

In this article, we highlight an issue that arises when using multiple b-values in a model-based analysis of diffusion MR data for tractography. The non-monoexponential decay, commonly observed in experimental data, is shown to induce overfitting in the distribution of fiber orientations when not considered in the model. Extra fiber orientations perpendicular to the main orientation arise to compensate for the slower apparent signal decay at higher b-values. We propose a simple extension to the ball and stick model based on a continuous gamma distribution of diffusivities, which significantly improves the fitting and reduces the overfitting. Using in vivo experimental data, we show that this model outperforms a simpler, noise floor model, especially at the interfaces between brain tissues, suggesting that partial volume effects are a major cause of the observed non-monoexponential decay. This model may be helpful for future data acquisition strategies that may attempt to combine multiple shells to improve estimates of fiber orientations in white matter and near the cortex.

摘要

在本文中,我们强调了在基于模型的扩散磁共振数据轨迹分析中使用多个 b 值时出现的问题。实验数据中常见的非单指数衰减被证明会导致在模型中不考虑时纤维方向分布的过拟合。当更高 b 值时出现的表观信号衰减较慢,会产生额外的与主方向垂直的纤维方向来进行补偿。我们提出了一种基于连续伽马扩散分布的球棒模型的简单扩展,这显著改善了拟合并减少了过拟合。使用体内实验数据,我们表明该模型优于更简单的噪声底模型,尤其是在脑组织之间的界面处,这表明部分容积效应是观察到的非单指数衰减的主要原因。该模型可能有助于未来的一些数据采集策略,这些策略可能试图结合多个壳层来改善白质和皮层附近纤维方向的估计。

相似文献

3
Quantifying brain connectivity: a comparative tractography study.量化脑连接性:一项对比性纤维束成像研究。
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):886-93. doi: 10.1007/978-3-642-04268-3_109.
5
Unbiased groupwise registration of white matter tractography.白质纤维束成像的无偏组内配准
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):123-30. doi: 10.1007/978-3-642-33454-2_16.
6
MesoFT: unifying diffusion modelling and fiber tracking.MesoFT:统一扩散建模与纤维追踪
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):201-8. doi: 10.1007/978-3-319-10443-0_26.
9
Belief propagation based segmentation of white matter tracts in DTI.基于信念传播的扩散张量成像中白质纤维束分割
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):943-50. doi: 10.1007/978-3-642-04268-3_116.

引用本文的文献

3
Denoising diffusion MRI: Considerations and implications for analysis.去噪扩散磁共振成像:分析的考量与影响
Imaging Neurosci (Camb). 2024 Jan 9;2. doi: 10.1162/imag_a_00060. eCollection 2024.

本文引用的文献

4
Deconvolution in diffusion spectrum imaging.扩散谱成像中的去卷积。
Neuroimage. 2010 Mar;50(1):136-49. doi: 10.1016/j.neuroimage.2009.11.066. Epub 2009 Dec 3.
5
Diffusion orientation transform revisited.重新探讨扩散方向变换。
Neuroimage. 2010 Jan 15;49(2):1326-39. doi: 10.1016/j.neuroimage.2009.09.067. Epub 2009 Oct 6.
9
Bayesian analysis of neuroimaging data in FSL.基于FSL的神经影像数据的贝叶斯分析。
Neuroimage. 2009 Mar;45(1 Suppl):S173-86. doi: 10.1016/j.neuroimage.2008.10.055. Epub 2008 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验