Berti Claudio, Gillespie Dirk, Eisenberg Robert S, Fiegna Claudio
ARCES, University of Bologna and IUNET, Via Venezia 260, 47521, Cesena, Italy.
Nanoscale Res Lett. 2012 Feb 16;7(1):135. doi: 10.1186/1556-276X-7-135.
The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al.
在纳米尺度下,快速准确地计算驱动带电粒子运动的电力是一项计算挑战。对于这种电荷离散性质不可忽略的系统,边界元方法(BEM)比有限差分/有限元方法是一种更好的方法。在本文中,我们将两种不同的边界元方法应用于三维空间中具有非均匀电介质的典型静电问题进行比较,强调它们在基于粒子的模拟中的适用性:霍伊尔斯等人提出的迭代方法以及博达等人引入的感应电荷计算方法。