Department of Biochemistry G. Moruzzi, University of Bologna, Bologna, Italy.
Biophys J. 2012 Jan 18;102(2):342-50. doi: 10.1016/j.bpj.2011.12.007.
We show via single-molecule mechanical unfolding experiments that the osmolyte glycerol stabilizes the native state of the human cardiac I27 titin module against unfolding without shifting its unfolding transition state on the mechanical reaction coordinate. Taken together with similar findings on the immunoglobulin-binding domain of streptococcal protein G (GB1), these experimental results suggest that osmolytes act on proteins through a common mechanism that does not entail a shift of their unfolding transition state. We investigate the above common mechanism via an Ising-like model for protein mechanical unfolding that adds worm-like-chain behavior to a recent generalization of the Wako-Saitô-Muñoz-Eaton model with support for group-transfer free energies. The thermodynamics of the model are exactly solvable, while protein kinetics under mechanical tension can be simulated via Monte Carlo algorithms. Notably, our force-clamp and velocity-clamp simulations exhibit no shift in the position of the unfolding transition state of GB1 and I27 under the effect of various osmolytes. The excellent agreement between experiment and simulation strongly suggests that osmolytes do not assume a structural role at the mechanical unfolding transition state of proteins, acting instead by adjusting the solvent quality for the protein chain analyte.
我们通过单分子力学展开实验表明,渗透剂甘油稳定了人心肌 I27 串联重复模块的天然状态,防止其在机械反应坐标上展开,而不会改变其展开过渡态。与链球菌蛋白 G(GB1)免疫球蛋白结合域的类似发现一起,这些实验结果表明,渗透剂通过一种不涉及展开过渡态移位的共同机制作用于蛋白质。我们通过一个类似伊辛的模型来研究上述共同机制,该模型为蛋白质力学展开增加了蠕虫链行为,同时支持组转移自由能的最近 Wako-Saitô-Muñoz-Eaton 模型的推广。该模型的热力学可以精确求解,而在机械张力下的蛋白质动力学可以通过蒙特卡罗算法进行模拟。值得注意的是,我们的力钳和速度钳模拟在各种渗透剂的作用下,GB1 和 I27 的展开过渡态位置没有发生变化。实验和模拟之间的良好一致性强烈表明,渗透剂在蛋白质力学展开过渡态中不承担结构作用,而是通过调整蛋白质链分析物的溶剂质量来发挥作用。