Chen Ziyang, Cheng Cheng, Liu Li, Lin Baoyang, Xiong Yongji, Zhu Weiyu, Zheng Ke, He Bingfang
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
ACS Omega. 2024 May 10;9(20):22441-22449. doi: 10.1021/acsomega.4c02477. eCollection 2024 May 21.
Spidroin, with robust mechanical performance and good biocompatibility, could fulfill broad applications in material science and biomedical fields. Development of miniature spidroin has made abundant fiber production economically feasible, but the mechanical properties of artificial silk still fall short of natural silk. The mechanism behind mechanical properties of spidroin usually focuses on β-microcrystalline regions; the effect of amorphous regions was barely studied. In this study, residue tyrosines (Y) were designed to replace asparagine (N)/glutamic acid (Q) in the characteristic motifs (GGX)n in amorphous regions for performance enhancement of spidroin; the mutants presented lower free energy and significantly exhibited stronger van der Waals and electrostatic interactions, which might result from π-π stacking interactions between the phenyl rings in the side chain of tyrosine. Additionally, the soluble expressions of wild-type spidroin and mutant spidroin were achieved when heterologously expressed in , with yields of 560 mg/L (2REP), 590 mg/L (2REPM), 240 mg/L (4REP), and 280 mg/L (4REPM). Significantly, secondary structure analysis confirmed that the mutant spidroin more avidly forms more β-sheets than the wild-type spidroin, and aggregation morphology suggested that mutant spidroin displayed better self-assembly capacity and was easier to form artificial spider silk fibers; in particular, self-assembled 4REPM nanofibrils had an average modulus of 11.2 ± 0.35 GPa, about 2 times higher than self-assembled silk nanofibrils and almost the same as that of native spider dragline silk fibers (10-15 GPa). Thus, we first demonstrated a new influence mechanism of the amorphous region's characteristic motif on the self-assembly and material properties of spidroin. Our study provides a reference for the design of high-performance material proteins and their heterologous preparation.
蜘蛛丝蛋白具有强大的机械性能和良好的生物相容性,在材料科学和生物医学领域有着广泛的应用前景。微型蜘蛛丝蛋白的开发使得大规模生产纤维在经济上成为可能,然而,人造丝的机械性能仍不及天然丝。蜘蛛丝蛋白机械性能背后的机制通常集中在β - 微晶区域;非晶区域的影响几乎未被研究。在本研究中,设计用残基酪氨酸(Y)取代非晶区域特征基序(GGX)n中的天冬酰胺(N)/谷氨酸(Q)以提高蜘蛛丝蛋白的性能;突变体呈现出更低的自由能,并显著表现出更强的范德华力和静电相互作用,这可能源于酪氨酸侧链苯环之间的π - π堆积相互作用。此外,当在[具体表达宿主未给出]中异源表达时,野生型蜘蛛丝蛋白和突变体蜘蛛丝蛋白均实现了可溶性表达,产量分别为560 mg/L(2REP)、590 mg/L(2REPM)、240 mg/L(4REP)和280 mg/L(4REPM)。值得注意的是,二级结构分析证实,突变体蜘蛛丝蛋白比野生型蜘蛛丝蛋白更易于形成更多的β - 折叠,并且聚集形态表明突变体蜘蛛丝蛋白具有更好的自组装能力,更容易形成人造蜘蛛丝纤维;特别是,自组装的4REPM纳米纤维的平均模量为11.2±0.35 GPa,约为自组装的[具体对比对象未给出]丝纳米纤维的2倍,几乎与天然蜘蛛拖牵丝纤维(10 - 15 GPa)相同。因此,我们首次证明了非晶区域特征基序对蜘蛛丝蛋白自组装和材料性能的新影响机制。我们的研究为高性能材料蛋白的设计及其异源制备提供了参考。