Suppr超能文献

多光子显微镜用于体内细菌感染的实时活体成像。

Multiphoton microscopy applied for real-time intravital imaging of bacterial infections in vivo.

作者信息

Choong Ferdinand X, Sandoval Ruben M, Molitoris Bruce A, Richter-Dahlfors Agneta

机构信息

Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden.

出版信息

Methods Enzymol. 2012;506:35-61. doi: 10.1016/B978-0-12-391856-7.00027-5.

Abstract

To understand the underlying mechanisms of bacterial infections, researchers have for long addressed the molecular interactions occurring when the bacterium interacts with host target cells. In these studies, primarily based on in vitro systems, molecular details have been revealed along with increased knowledge regarding the general infection process. With the recent advancements in in vivo imaging techniques, we are now in a position to bridge a transition from classical minimalistic in vitro approaches to allow infections to be studied in its native complexity-the live organ. Techniques such as multiphoton microscopy (MPM) allow cellular-level visualization of the dynamic infection process in real time within the living host. Studies in which all interplaying factors, such as the influences of the immune, lymphatic, and vascular systems can be accounted for, are likely to provide new insights to our current understanding of the infection process. MPM imaging becomes extra powerful when combined with advanced surgical procedure, allowing studies of the illusive early hours of infection. In this chapter, our intention is to provide a general view on how to design and carry out intravital imaging of a bacterial infection. While exemplifying this using a spatiotemporally well-controlled uropathogenic Escherichia coli (UPEC) infection in rat kidneys, we hope to provide the reader with general considerations that can be adapted to other bacterial infections in organs other than the kidney.

摘要

为了了解细菌感染的潜在机制,长期以来,研究人员一直在探讨细菌与宿主靶细胞相互作用时发生的分子相互作用。在这些主要基于体外系统的研究中,随着对一般感染过程认识的增加,分子细节也得以揭示。随着体内成像技术的最新进展,我们现在能够实现从经典的简约体外方法到在其天然复杂性——活体器官中研究感染的转变。诸如多光子显微镜(MPM)等技术能够在活体宿主内实时对动态感染过程进行细胞水平的可视化观察。考虑到所有相互作用的因素,如免疫、淋巴和血管系统的影响的研究,可能会为我们当前对感染过程的理解提供新的见解。当与先进的外科手术相结合时,MPM成像变得格外强大,从而能够研究难以捉摸的感染早期阶段。在本章中,我们旨在概述如何设计和进行细菌感染的活体成像。我们以大鼠肾脏中时空控制良好的尿路致病性大肠杆菌(UPEC)感染为例,希望为读者提供一些通用的注意事项,这些注意事项可适用于肾脏以外器官的其他细菌感染。

相似文献

1
Multiphoton microscopy applied for real-time intravital imaging of bacterial infections in vivo.
Methods Enzymol. 2012;506:35-61. doi: 10.1016/B978-0-12-391856-7.00027-5.
2
Novel innate immune functions revealed by dynamic, real-time live imaging of bacterial infections.
Crit Rev Immunol. 2010;30(2):107-17. doi: 10.1615/critrevimmunol.v30.i2.10.
3
Intravital two-photon imaging to understand bacterial infections of the mammalian host.
Methods Mol Biol. 2014;1197:87-100. doi: 10.1007/978-1-4939-1261-2_5.
4
Multiphoton imaging of host-pathogen interactions.
Biotechnol J. 2009 Jun;4(6):804-11. doi: 10.1002/biot.200800347.
5
Progression of bacterial infections studied in real time--novel perspectives provided by multiphoton microscopy.
Cell Microbiol. 2007 Oct;9(10):2334-43. doi: 10.1111/j.1462-5822.2007.01019.x. Epub 2007 Jul 27.
6
Roundtrip explorations of bacterial infection: from single cells to the entire host and back.
Trends Microbiol. 2007 Nov;15(11):483-90. doi: 10.1016/j.tim.2007.10.006. Epub 2007 Nov 5.
7
Frontiers in Intravital Multiphoton Microscopy of Cancer.
Cancer Rep (Hoboken). 2020 Feb;3(1):e1192. doi: 10.1002/cnr2.1192. Epub 2019 Jun 20.
8
Real-time live imaging to study bacterial infections in vivo.
Curr Opin Microbiol. 2009 Feb;12(1):31-6. doi: 10.1016/j.mib.2008.11.002. Epub 2009 Jan 8.
9
Intravital Multiphoton Imaging of the Kidney: Tubular Structure and Metabolism.
Methods Mol Biol. 2016;1397:155-172. doi: 10.1007/978-1-4939-3353-2_12.
10
Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals.
Cell Microbiol. 2007 Feb;9(2):413-24. doi: 10.1111/j.1462-5822.2006.00799.x. Epub 2006 Aug 1.

引用本文的文献

1
Physical Properties of E143 Food Dye as a New Organic Semiconductor Nanomaterial.
Nanomaterials (Basel). 2023 Jun 29;13(13):1974. doi: 10.3390/nano13131974.
2
Intravital Multiphoton Microscopy as a Tool for Studying Renal Physiology, Pathophysiology and Therapeutics.
Front Physiol. 2022 Mar 24;13:827280. doi: 10.3389/fphys.2022.827280. eCollection 2022.
3
Kidney intercalated cells are phagocytic and acidify internalized uropathogenic Escherichia coli.
Nat Commun. 2021 Apr 23;12(1):2405. doi: 10.1038/s41467-021-22672-5.
4
High Resolution Intravital Imaging of the Renal Immune Response to Injury and Infection in Mice.
Front Immunol. 2019 Nov 29;10:2744. doi: 10.3389/fimmu.2019.02744. eCollection 2019.
5
Unraveling the host's immune response to infection: Seeing is believing.
J Leukoc Biol. 2019 Aug;106(2):323-335. doi: 10.1002/JLB.4RI1218-503R. Epub 2019 Feb 18.
6
Intravital multiphoton microscopy as a tool for studying renal physiology and pathophysiology.
Methods. 2017 Sep 1;128:20-32. doi: 10.1016/j.ymeth.2017.07.014. Epub 2017 Jul 19.
7
Intravital imaging of the kidney.
Methods. 2017 Sep 1;128:33-39. doi: 10.1016/j.ymeth.2017.03.024. Epub 2017 Apr 12.
8
Intravital imaging of the kidney in a rat model of salt-sensitive hypertension.
Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F163-F173. doi: 10.1152/ajprenal.00466.2016. Epub 2017 Apr 12.
9
Renal Hemodynamics in AKI: In Search of New Treatment Targets.
J Am Soc Nephrol. 2016 Jan;27(1):49-58. doi: 10.1681/ASN.2015030234. Epub 2015 Oct 28.
10
The multifaceted role of the renal microvasculature during acute kidney injury.
Pediatr Nephrol. 2016 Aug;31(8):1231-40. doi: 10.1007/s00467-015-3231-2. Epub 2015 Oct 22.

本文引用的文献

1
Live-Animal Imaging of Renal Function by Multiphoton Microscopy.
Curr Protoc Cytom. 2018 Jan 18;83:12.9.1-12.9.25. doi: 10.1002/cpcy.32.
4
Rapid diagnosis and quantification of acute kidney injury using fluorescent ratio-metric determination of glomerular filtration rate in the rat.
Am J Physiol Renal Physiol. 2010 Nov;299(5):F1048-55. doi: 10.1152/ajprenal.00691.2009. Epub 2010 Aug 4.
5
Multiphoton imaging of host-pathogen interactions.
Biotechnol J. 2009 Jun;4(6):804-11. doi: 10.1002/biot.200800347.
6
Real-time live imaging to study bacterial infections in vivo.
Curr Opin Microbiol. 2009 Feb;12(1):31-6. doi: 10.1016/j.mib.2008.11.002. Epub 2009 Jan 8.
7
Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis.
Cell Microbiol. 2008 Oct;10(10):1987-98. doi: 10.1111/j.1462-5822.2008.01182.x. Epub 2008 Jun 28.
8
Hypoxia divergently regulates production of reactive oxygen species in human pulmonary and coronary artery smooth muscle cells.
Am J Physiol Lung Cell Mol Physiol. 2007 Oct;293(4):L952-9. doi: 10.1152/ajplung.00203.2007. Epub 2007 Aug 10.
9
Progression of bacterial infections studied in real time--novel perspectives provided by multiphoton microscopy.
Cell Microbiol. 2007 Oct;9(10):2334-43. doi: 10.1111/j.1462-5822.2007.01019.x. Epub 2007 Jul 27.
10
Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain.
Adv Drug Deliv Rev. 2006 Sep 15;58(7):773-87. doi: 10.1016/j.addr.2006.07.001. Epub 2006 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验