Suppr超能文献

与八种人类疾病相关的小信号模块的系统分析。

Systems analysis of small signaling modules relevant to eight human diseases.

机构信息

Department of Biomedical Engineering, University of Virginia Health System, One Boar’s Head Pointe, Charlottesville, VA 22908, USA.

出版信息

Ann Biomed Eng. 2011 Feb;39(2):621-35. doi: 10.1007/s10439-010-0208-y. Epub 2010 Dec 4.

Abstract

Using eight newly generated models relevant to addiction, Alzheimer's disease, cancer, diabetes, HIV, heart disease, malaria, and tuberculosis, we show that systems analysis of small (4-25 species), bounded protein signaling modules rapidly generates new quantitative knowledge from published experimental research. For example, our models show that tumor sclerosis complex (TSC) inhibitors may be more effective than the rapamycin (mTOR) inhibitors currently used to treat cancer, that HIV infection could be more effectively blocked by increasing production of the human innate immune response protein APOBEC3G, rather than targeting HIV's viral infectivity factor (Vif), and how peroxisome proliferator-activated receptor alpha (PPARα) agonists used to treat dyslipidemia would most effectively stimulate PPARα signaling if drug design were to increase agonist nucleoplasmic concentration, as opposed to increasing agonist binding affinity for PPARα. Comparative analysis of system-level properties for all eight modules showed that a significantly higher proportion of concentration parameters fall in the top 15th percentile sensitivity ranking than binding affinity parameters. In infectious disease modules, host networks were significantly more sensitive to virulence factor concentration parameters compared to all other concentration parameters. This work supports the future use of this approach for informing the next generation of experimental roadmaps for known diseases.

摘要

利用与成瘾、阿尔茨海默病、癌症、糖尿病、艾滋病、心脏病、疟疾和结核病相关的 8 个新生成的模型,我们展示了从小型(4-25 个物种)、有界的蛋白质信号模块进行系统分析,可以快速从已发表的实验研究中生成新的定量知识。例如,我们的模型表明,肿瘤硬化复合物(TSC)抑制剂可能比目前用于治疗癌症的雷帕霉素(mTOR)抑制剂更有效,增加人类先天免疫反应蛋白 APOBEC3G 的产生而不是针对 HIV 的病毒感染力因子(Vif),可以更有效地阻止 HIV 感染,以及用于治疗血脂异常的过氧化物酶体增殖物激活受体α(PPARα)激动剂如果药物设计旨在增加激动剂核质浓度,而不是增加激动剂与 PPARα 的结合亲和力,将如何最有效地刺激 PPARα 信号。对所有八个模块的系统水平特性进行比较分析表明,与结合亲和力参数相比,浓度参数中处于前 15%敏感度排名的比例明显更高。在传染病模块中,与所有其他浓度参数相比,宿主网络对毒力因子浓度参数更为敏感。这项工作支持未来使用这种方法为已知疾病提供下一代实验路线图的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/596f/3033523/d21d4847e250/10439_2010_208_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验