Suppr超能文献

心血管风险。

Cardiovascular risk.

机构信息

General Practice and Primary Care Research Unit, University of Cambridge, UK.

出版信息

Br J Clin Pharmacol. 2012 Sep;74(3):396-410. doi: 10.1111/j.1365-2125.2012.04219.x.

Abstract

Cardiovascular disease is a major, growing, worldwide problem. It is important that individuals at risk of developing cardiovascular disease can be effectively identified and appropriately stratified according to risk. This review examines what we understand by the term risk, traditional and novel risk factors, clinical scoring systems, and the use of risk for informing prescribing decisions. Many different cardiovascular risk factors have been identified. Established, traditional factors such as ageing are powerful predictors of adverse outcome, and in the case of hypertension and dyslipidaemia are the major targets for therapeutic intervention. Numerous novel biomarkers have also been described, such as inflammatory and genetic markers. These have yet to be shown to be of value in improving risk prediction, but may represent potential therapeutic targets and facilitate more targeted use of existing therapies. Risk factors have been incorporated into several cardiovascular disease prediction algorithms, such as the Framingham equation, SCORE and QRISK. These have relatively poor predictive power, and uncertainties remain with regards to aspects such as choice of equation, different risk thresholds and the roles of relative risk, lifetime risk and reversible factors in identifying and treating at-risk individuals. Nonetheless, such scores provide objective and transparent means of quantifying risk and their integration into therapeutic guidelines enables equitable and cost-effective distribution of health service resources and improves the consistency and quality of clinical decision making.

摘要

心血管疾病是一个主要的、不断增长的全球性问题。重要的是,有发展心血管疾病风险的个体可以根据风险进行有效识别和适当分层。这篇综述探讨了我们对风险一词的理解、传统和新型风险因素、临床评分系统,以及风险在告知处方决策中的应用。已经确定了许多不同的心血管风险因素。已确立的传统因素,如年龄,是不良结局的有力预测因素,在高血压和血脂异常的情况下,是治疗干预的主要目标。还描述了许多新型生物标志物,如炎症和遗传标志物。这些尚未被证明在改善风险预测方面具有价值,但可能代表潜在的治疗靶点,并促进对现有治疗方法的更有针对性的使用。风险因素已被纳入几种心血管疾病预测算法中,如 Framingham 方程、SCORE 和 QRISK。这些算法的预测能力相对较差,在选择方程、不同的风险阈值以及相对风险、终生风险和可逆因素在识别和治疗高危个体中的作用等方面仍存在不确定性。尽管如此,这些评分提供了量化风险的客观和透明手段,其纳入治疗指南可使卫生服务资源的公平和有效分配,并提高临床决策的一致性和质量。

相似文献

1
Cardiovascular risk.心血管风险。
Br J Clin Pharmacol. 2012 Sep;74(3):396-410. doi: 10.1111/j.1365-2125.2012.04219.x.
6
Assessment of cardiovascular risk in primary care patients in France.法国初级保健患者的心血管风险评估。
Arch Cardiovasc Dis. 2011 Jun-Jul;104(6-7):381-7. doi: 10.1016/j.acvd.2011.04.007. Epub 2011 Jul 8.

引用本文的文献

2
Optimized Clinical Feature Analysis for Improved Cardiovascular Disease Risk Screening.优化临床特征分析以改善心血管疾病风险筛查
IEEE Open J Eng Med Biol. 2024 Jan 29;5:816-827. doi: 10.1109/OJEMB.2023.3347479. eCollection 2024.
4
Major Limitations of Cardiovascular Risk Scores.心血管风险评分的主要局限性。
Cardiovasc Ther. 2024 Feb 28;2024:4133365. doi: 10.1155/2024/4133365. eCollection 2024.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验