Suppr超能文献

从猴子和鸟类的布朗桥运动模型中推导出运动属性和环境的影响。

Deriving movement properties and the effect of the environment from the Brownian bridge movement model in monkeys and birds.

机构信息

Department of Mathematics and Computer Science, Technical University Eindhoven, Eindhoven, The Netherlands.

Faculty of Mathematics, Ruhr-Universität Bochum, Bochum, Germany.

出版信息

Mov Ecol. 2015 Jun 15;3(1):18. doi: 10.1186/s40462-015-0043-8. eCollection 2015.

Abstract

BACKGROUND

The Brownian bridge movement model (BBMM) provides a biologically sound approximation of the movement path of an animal based on discrete location data, and is a powerful method to quantify utilization distributions. Computing the utilization distribution based on the BBMM while calculating movement parameters directly from the location data, may result in inconsistent and misleading results. We show how the BBMM can be extended to also calculate derived movement parameters. Furthermore we demonstrate how to integrate environmental context into a BBMM-based analysis.

RESULTS

We develop a computational framework to analyze animal movement based on the BBMM. In particular, we demonstrate how a derived movement parameter (relative speed) and its spatial distribution can be calculated in the BBMM. We show how to integrate our framework with the conceptual framework of the movement ecology paradigm in two related but acutely different ways, focusing on the influence that the environment has on animal movement. First, we demonstrate an a posteriori approach, in which the spatial distribution of average relative movement speed as obtained from a "contextually naïve" model is related to the local vegetation structure within the monthly ranging area of a group of wild vervet monkeys. Without a model like the BBMM it would not be possible to estimate such a spatial distribution of a parameter in a sound way. Second, we introduce an a priori approach in which atmospheric information is used to calculate a crucial parameter of the BBMM to investigate flight properties of migrating bee-eaters. This analysis shows significant differences in the characteristics of flight modes, which would have not been detected without using the BBMM.

CONCLUSIONS

Our algorithm is the first of its kind to allow BBMM-based computation of movement parameters beyond the utilization distribution, and we present two case studies that demonstrate two fundamentally different ways in which our algorithm can be applied to estimate the spatial distribution of average relative movement speed, while interpreting it in a biologically meaningful manner, across a wide range of environmental scenarios and ecological contexts. Therefore movement parameters derived from the BBMM can provide a powerful method for movement ecology research.

摘要

背景

布朗桥运动模型(BBMM)基于离散位置数据为动物的运动路径提供了一种合理的生物学近似,是量化利用分布的强大方法。基于 BBMM 计算利用分布,同时直接从位置数据计算运动参数,可能会导致不一致和误导性的结果。我们展示了如何扩展 BBMM 以计算衍生运动参数。此外,我们还展示了如何将环境背景纳入基于 BBMM 的分析。

结果

我们开发了一种基于 BBMM 分析动物运动的计算框架。特别是,我们展示了如何在 BBMM 中计算衍生运动参数(相对速度)及其空间分布。我们展示了如何将我们的框架与运动生态学范式的概念框架以两种相关但截然不同的方式相结合,重点关注环境对动物运动的影响。首先,我们展示了一种后验方法,其中从“上下文盲目”模型获得的平均相对运动速度的空间分布与野生长尾猴每月活动范围的局部植被结构有关。如果没有像 BBMM 这样的模型,就不可能以合理的方式估计这样的参数的空间分布。其次,我们引入了一种先验方法,其中使用大气信息来计算 BBMM 的一个关键参数,以研究迁徙蜂虎的飞行特性。该分析显示了飞行模式特征的显著差异,如果不使用 BBMM,这些差异将无法检测到。

结论

我们的算法是第一种允许基于 BBMM 计算利用分布以外的运动参数的算法,我们提出了两个案例研究,展示了我们的算法可以应用于估计平均相对运动速度的空间分布的两种基本不同方式,同时以生物学上有意义的方式进行解释,涵盖了广泛的环境场景和生态背景。因此,从 BBMM 得出的运动参数可以为运动生态学研究提供一种强大的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef82/4466871/3175d2213a06/40462_2015_43_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验